
Pis'ma v ZhETF, vol. 94, iss. 8, pp. 631 { 634 c 2011 October 25Particle collisions near the cosmological horizon of aReissner{Nordstr�om de Sitter black holeC. Zhong1), S.Gao1)Department of Physics, Beijing Normal University, 100875 P.R., Beijing, ChinaSubmitted 23 August 2011Resubmitted 8 September 2011It has recently been shown that black holes can act as particle accelerators and two particles can collidewith arbitrarily high center-of-mass (CM) energy under certain critical conditions. In this paper, we inves-tigate particle collisions outside a Reissner{Nordstr�om{de Sitter (RN-dS) black hole. We �nd that in�niteCM-energy can be produced near the cosmological horizon for generic spacetime con�gurations. Remarkably,such in�nite CM-energy does not require the black hole to be extremal, in contrast to spacetimes in the absenceof cosmological constants. However, since the charge of an astrophysical body is negligible, the required chargeto mass ratio of the particle is extremely higher than that of any elementary particle.1. Introduction. Banados, Silk and West (BSW)[1] showed that Kerr black holes can serve as parti-cle accelerators and in�nite center-of-mass energies canin principle arise. The BSW-mechanism was soon ex-tended to di�erent black hole solutions [2{12]. Theseworks suggest that the following features are requiredfor the divergence of the CM-energy: 1) the collisionmust occur arbitrarily close to the horizon; 2) one of theparticles possesses a critical value of angular momen-tum or charge; 3) the black hole must be extremal. Ithas been pointed out [2, 3] that condition 3 can not beful�lled due to the theoretical upper limit on the spin pa-rameter of black hole. So it would be more meaningfulto look for in�nite CM-energies around a non-extremalblack hole. Recently, we have proven [13] that in�niteCM-energies cannot be created outside a non-extremalKerr black hole. However, Wei et al. [14] pointed outthat for a Kerr de Sitter black hole, two particles cancollide with arbitrarily high CM-energy without impos-ing the extremal condition. This result indicates that ifcosmological constant is taken into account, condition 3may be released. Since the well-known �CDM -model�ts remarkably well with the current cosmological obser-vations, it is worthwhile to further study the acceleratinge�ect for spacetimes with a positive cosmological con-stant.In this paper, we investigate particle collisions near acharged black hole in an asymptotically de Sitter space-time, i.e., Reissner{Nordstr�om{de Sitter black hole.Previously, Zaslavskii [4] has studied the radial mo-tion of charged particles in a Reissner{Nordstr�om (RN)background and found the result is similar to that ina Kerr background. In particular, in�nite CM-energies1)cczhong@mail.bnu.edn.cn, sijie@bnu.edn.cn

can only be attained when the black hole is extremal, i.e.,the black hole possesses the maximum charge Q = M .However, the situation will be di�erent if a positive cos-mological constant � is introduced. In an asymptot-ically de Sitter black hole, there exists a cosmologicalhorizon which is located at the radius of order ��1=2.By calculating the radial motion of charged particles,we �nd that in�nite CM-energies can be obtained at thecosmological horizon of a generic RN-dS black hole. Inthis case, the black hole need not be extremal. However,a critical charge is required for one of the particles. Bynumerical estimation, we �nd that the charge to massratio of the particle is much higher than that of an elec-tron. Thus, the in�nite CM-energy is not realizable inthe real world.This paper is organized as follows. In section2, wediscuss the horizons of RN-dS space-times. In section 3,we calculate the CM-energy of two particles near the cos-mological horizon of RN-dS black hole. In section 4, weperform some numerical calculations based on the dataof astrophysical observations. Finally, conclusions aremade in section 5.2. RN-dS Black Hole Horizons. The RN-dSblack hole is described by the following metricds2 = ��dt2 + dr2� + r2d�2 + r2 sin2 �d'2; (1)where � = 1� 2Mr + Q2r2 � r2l2 and l =q 3� . The roots of� = 0 give rise to the location of horizons. We denotethe three roots by r1; r2; r3; r1 and r2 correspond to theinner and outer horizons of a RN black hole, while r3is called the cosmological horizon. Due to the smallnessof �, r3 can be approximated by l and is much largerthan r1 and r2. Fig. 1 depicts the function �(r) in theRN and RN-dS cases. For l�M , the radius of cosmo-�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011 631
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Fig. 1. The function �(r) for the RN and RN-dS black holeslogical horizon r3 is much larger than the radius of thetwo black hole horizons r1 and r2.A RN-dS black hole is called extremal if two or threehorizons coincide. The three types of extremal horizonsare illustrated in Fig. 2. Using the method suggested by[7], it is easy to check that whenM = p69 l; Q = p36 l (2)is satis�ed, the three horizons coincide atr1;2;3 = lp6 : (3)3. Collision energy in the center-of-massframe. In this section, we shall study the collision oftwo particles in the RN-dS spacetime. Suppose thatthe two particles have the same mass m and di�erentcharges q1 and q2. In the rest of the paper, we shall fo-cus on collisions near the cosmological horizon which islocated at r = r3. Collisions near the black hole horizonr = r2 is essentially the same as the case in the absenceof the cosmological constant which has been studied byZaslavskii [4]. Suppose the two particles collide in theregion r > r3. The center-of-mass energy is given by [1]Ec:m = mp2q1� gabua1ub2; (4)where ua = dx�d� � @@x��a (5)is the four-velocity of particle at the collision point. Themotion of a charged particle is determined by the fol-lowing Lagrangian [15]L = m2 g�� _x� _x� + qA� _x�: (6)Here _x� � dx�=d� and A� are the components of theelectromagnetic 4-potential. Substituting the RN-dSmetric Eq. (1) into Eq. (6), we �nd [16],L = m2 ���_t2 + 1� _r2 + r2 _�2 + r2 sin2 � _'2�� qQr _t:(7)

The Euler{Lagrange equation then leads to the constantof the motion E = m�_t+ qQr : (8)For our purposes, we shall con�ne our discussion to ra-dial motions, i.e., _� = _� = 0. Thus, the normalizationcondition g��u�u� = �1 yields_r = � 1ms�E � qQr �2 �m2�: (9)Here we have chosen the minus sign because �(@=@r)ais a future-directed timelike vector outside the cosmo-logical horizon.By direct substitution of Eqs. (8) and (9) in Eq. (4),we �nd E2c:m = 2m2�1+(E1� q1Qr )(E2� q2Qr )�q(E1� q1Qr )2�m2�q(E2� q2Qr )2�m2�m2� �:(10)Our purpose is to �nd conditions for a possible in�niteEc:m. Eq. (10) suggests that an in�nite Ec:m can occuronly at a horizon where � = 0. We shall focus on thecosmic horizon located at r = r3. To see if Ec:m divergesat the horizon, we need to calculate the limiting valueof the numerator of Eq. (10). The lowest order of thenumerator can be obtained by taking � = 0 and r = rH ,which gives�E1 � q1QrH ��E2 � q2QrH ���s�E1 � q1QrH �2s�E2 � q2QrH �2: (11)To simplify this formula, we need to know the sign ofEi � qiQ=rH , where i = 1; 2. According to Eq. (8),Ei � qiQ=rH is proportional to _t. Note that (@=@t)ais spacelike in the region r > rH . Thus the sign of _tcorresponds to an ingoing mode or outgoing mode. Ifthe two particles could take di�erent sign at the hori-zon, it would mean that one particle falls toward thehorizon and the other one escapes from the horizon.This is not possible because even a photon cannot es-cape from the horizon2). Thus, Ei � qiQ=rH must havethe same sign and then Eq. (11) vanishes. The vanish-ing of Eq. (11) is important for our following analysis.Otherwise, Ec:m would be generically divergent without2)The same argument has been used in our paper [13] for theinner horizon of a Kerr black hole.�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011
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Fig. 2. Three types of extremal RN-dS black holesrequiring the particle to possess a critical charge. Byexpanding the numerator of Eq. (10) around � = 0, weobtain the following limitE2c:m2m2 = 1 + 12  q2 � E2rHQq1 � E1rHQ + q1 � E1rHQq2 � E2rHQ ! : (12)We see that Ec:m blows up at the horizon if one of theparticle takes the critical chargeqc = ErHQ (13)and the other particle takes any di�erent value of charge.Since the divergence of energy occurs at the horizonr = rH = r3, we need to check if the particle can actu-ally reach the horizon from in�nity. This requires thatthe square root of Eq. (9) must be positive in a vicinityof the horizon. Note that � < 0 in the region r > r3, itfollows immediately that _r2 > 0 outside the cosmologi-cal horizon. Thus, with the critical charge, the particlecan fall all the way from in�nity to the horizon. Theabove argument does not require any �ne tuning on theparameters Q, M and �. Thus, an in�nite Ec:m is at-tainable at the cosmological horizon of a generic RN-dSblack hole.4. Numerical estimation. We see from Eq. (13)that the critical charge is proportional to r3, which isa very large quantity. Consequently, it may lead to avery large charge to mass ratio. To estimate the ratio,we choose E in Eq. (13) to be the proper mass m of theparticle. Thus, the required charge to mass ratio in SIunits reads q=m = 4��0r3c2Q : (14)To estimate r3, write down � in SI units� = 1� 2GMc2r + GQ24�"0c4r2 � G�r23c2 : (15)We take M = 2 � 1032 kg, which is about 100 times thesolar mass. In geometrized units, the maximum charge

of a black hole is Q =M . So in SI units, the maximumcharge is given byQ �r9��0G2 M � 1:8 � 1022C: (16)Based on supernovae observations, the value of the cos-mological constant is about� � 8��vac � 10�120; (17)where �vac � 1094 kg �m�3 is the vacuum energy den-sity. Then r3 can be solved as r3 � 1026m and theright-hand side of Eq. (14) is found to beq=m � 5 � 1010C=kg: (18)Note that the charge to mass ratio for an electron ise=me � 1:8 � 1011C=kg; (19)which is comparable to the required charge to mass ratio.However, the above estimation is too optimistic becausewe have chosen the maximum charge Q for the blackhole. Such a value only exists in theory. According to[17{22], a real astrophysical body usually has negligi-ble charge which satis�es Q=M < 10�18 in geometrizedunits. This means that the charge to mass ratio requiredfor a particle is at least 1018 times larger than that ofan election. Such particles are unlikely to exist. Inorder to �nd a smaller charge to mass ratio, we haveto consider other con�gurations. Eq. (14) suggests thatq=m can be decreased by increasing Q or decreasing r3.Since r3 � l = p3=� is almost a constant, the onlychoice left is to make Q as large as possible. Accord-ing to the recent observation and analysis [23, 24], themost massive black hole may have 1010 solar masses,i.e., M � 2 � 1040 kg. By taking Q = 10�18M , we �ndthat q=m � 1020, still many orders of magnitude largerthan e=me. Thus, the current astrophysical evidencessuggest that the required critical charge is unlikely tobe attained by fundamental particles.5. Conclusions. We have studied the BSW acceler-ating e�ect for a RN-dS black hole. The presence of the7 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011



634 C. Zhong, S.Gaocosmological constant makes in�nite CM-energy possi-ble at the cosmological horizon. Unlike the RN case,the divergence of energy does not require the black holeto be extremal. On the other hand, one of the parti-cles must possess a critical charge. Simple numericalestimation shows that a reasonable charge to mass ratiois possible only when the black hole is nearly extremal,i.e., Q �M . However, in the real world any astrophysi-cal body may not have a charge to mass ratio of greaterthan 10�18. By using this limit, we �nd that even forthe most massive black hole, the required charge to massratio would be much higher than that of electron. There-fore, even in the presence of cosmological constant, acollision with arbitrarily high energy is unlikely to oc-cur due to limitations on the maximal charge to massratios of astrophysical bodies and elementary particles.This research was supported by NSFC grants#10605006, 10975016 and by \the FundamentalResearch Funds for the Central Universities".1. M. Banados, J. Silk, and S.M West, Phys. Rev. Lett.103, 111102 (2009).2. T. Jacobson, T. P. Sotiriou, Phys. Rev. Lett. 104,021101 (2010).3. E. Berti, V. Cardoso, L. Gualtieri et al., Phys. Rev. Lett.103, 239001 (2009).4. O. B. Zaslavskii, JETP Lett. 92 571 (2010).5. A.A. Grib and Yu.V. Pavlov, JETP Lett. 92,125(2010).6. S.W. Wei, Y.X. Liu, H. Guo and C. E. Fu, Phys. Rev.
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