
Pis'ma v ZhETF, vol. 94, iss. 8, pp. 697 { 703 c 2011 October 25The low-temperature collapse of the Fermi surface and phasetransitions in correlated Fermi systemsV.A.Khodel1)National Research Centre \Kurchatov Institute", 123182 Moscow, RussiaMcDonnell Center for the Space Science and Department of Physics,Washington University, MO 63130 St.Louis, USASubmitted 13 September 2011A topological crossover, associated with the collapse of the Fermi surface in strongly correlated Fermisystems, is examined. It is demonstrated that in these systems, the temperature domain where standard Fermiliquid results hold dramatically narrows, because the Landau regime is replaced by a classical one. The impactof the collapse of the Fermi surface on pairing correlations is analyzed. In the domain of the Lifshitz phasediagram where the Fermi surface collapses, splitting of the BCS superconducting phase transition into twodi�erent ones of the same symmetry is shown to occur.Introduction. For the past few years, the investi-gation of topological transitions in correlated Fermi sys-tems that dates back to a pioneer work by I. M. Lifshitz,published in 1960 [1], has become one of hot topics incondensed matter physics [2{15]. These transitions areresponsible for non-Fermi-liquid (NFL) behavior thatmanifests itself in singularities of thermodynamic char-acteristics of Fermi systems. E.g. in FL-theory, the spinsusceptibility �(T ) remains unchanged at T ! 0. Con-trariwise, at the transition point, �(T ! 0) diverges asT��, with the critical index � > 0, somewhat depend-ing on the shape of the single-particle spectrum �(p)[16, 17, 11]. In case the function �(p) is measured fromthe chemical potential �, the topological rearrangementof the Landau state is associated with the change in thenumber of its zeroes [1, 18]. In conventional nonsuper-uid homogeneous Fermi systems, whose Fermi surfacesare singly connected, equation�(p) = 0 (1)has the single real root, the Fermi momentum pF. Inthe original article, Lifshitz analyzed topological transi-tions, occurring in noninteracting electron gas of met-als at high pressures. Scenarios for such transitions,entailed by interactions between quasiparticles, one ofwhich is addressed in this article, have emerged thirtyyears later [19{23], (for a recent review, see Ref. [24]).NFL behavior of Fermi systems near one of the criti-cal points of Eq. (1) associated with the divergence ofthe e�ective mass M� (this point is called the quantumcritical point (QCP)), has been studied extensively inrecent years [25, 26].1)e-mail: vak@wuphys.wustl.edu

Usually Eq. (1) is analyzed at zero temperature.However, the spectrum �(p) depends on T , being afunctional of the quasiparticle momentum distributionn(p; T ) that has the standard Fermi-like formn(p; T ) = �1 + e�(p)=T��1 ; (2)normalized in 3D by ordinary conditionZ n(p)d� = � � p3F3�2 ; (3)with the volume element in 3D momentum space d� == p2dp=�2.The key point of this article is that at T > 0 wheretopological transitions are replaced by crossovers, thereis a di�erent route of the topological rearrangement, as-sociated with the collapse of the Fermi surface. Thecollapse occurs in case Eq. (1) has no real roots at all.A classical Maxwell reconstruction of the T = 0 ideal-Fermi-gas momentum distribution is the simplest ex-ample of such a topological rearrangement. In this casewhere �(p) = p2=2M � �(T ), the trajectory of the sin-gle root of Eq. (1), denoted further p1=2 due to relationn(p1=2) = 1=2, stemming from Eq. (2) at �(p) = 0, iseasily traced. At T ! 0, one has p1=2(0) = pF. Withthe temperature rise, p1=2(T ) moves toward the origin,attaining it at temperature where �(T ) changes sign. Athigher T , real roots of Eq. (1) no longer exist, and thefunction �(p) becomes positive de�ned, the gap in thespectrum �(p) increasing with the further increase of Tthat entails rapid spread of the quasiparticle momentumdistribution n(p; T ).In systems with weak and/or moderate correlations,such an option is of no interest, since temperature TM,11 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011 697



698 V.A.Khodelat which the Maxwell-like crossover takes place, is com-parable with the Fermi energy �0F = p2F=2M . How-ever, with strengthening correlations, the e�ective massM� increases, and correspondingly, the FL-spectrum�(p) = pF(p � pF)=M� becomes atter and atter. Asa result, temperature TM goes down that leads, in itsturn, to the dramatic shrinkage of the temperature re-gion where the standard FL behaviors: C(T ) / T , forthe speci�c heat, and �(T ) = const, for the spin sus-ceptibility, hold. Importantly, at T ' TM � �0F, theLandau{Migdal quasiparticle pattern remains applicableto evaluation of thermodynamic properties. This allowsone to apply the quasiparticle formalism to the inves-tigation of relevant problems, like splitting of the BCSsuperconducting phase transition into two ones, (see be-low), notwithstanding discrepancies between experimen-tal data and standard FL-predictions.Simple model of the collapse of the Fermi surface atlow T . Within the quasiparticle picture, all the thermo-dynamic properties of correlated Fermi systems are eval-uated in terms of the single-particle spectrum �(p). Thisspectrum can be calculated on the base of FL-equation,connecting �(p) with the FL quasiparticle momentumdistribution (2) in terms of the �rst harmonic f1 of theinteraction function f , taken as a phenomenological in-put. In the 3D case, this equation has the form:@�(p)@p = pM + 13 Z f1(p; p1)@n(p1)@p1 d�1: (4)The interaction function f(p;p1) is known to co-incide with a speci�c limit of the scattering amplitude�(p1;p2;q; !) where q = p� p1 ! 0; ! ! 0; q=! ! 0.Generally � contains two di�erent components. The�rst that prevails in the vicinity of second-order phasetransitions changes rapidly near the Fermi surface. Thesecond varies smoothly until momenta reach valuesmuch larger than pF. Neglecting irregular components,the scattering amplitude � can be written in the stan-dard form � / 1=(a�1�req2=2) where a is the scatteringlength, and re, the e�ective range. This form has to besupplemented by an exchange term to yield�(p;p1;q) = 4�M � a1�areq2=2� a=21�are(p�p1+q)2=2� :(5)To facilitate the analysis we expand this expression intothe Taylor series. Retaining only two �rst terms in thisexpansion, inherent in an e�ective mass approximation,wheref(p;p1) = �(p;p1;q = 0) = 2�aM h1� are2 (p� p1)2i ;(6)

the group velocity d�(p)=dp is evaluated from Eq. (4) inthe closed form:d�(p)dp = pM �1� 2�a2re�� : (7)The spectrum �(p) is then calculated straightforwardly.In doing so an immaterial constant, associated with the�rst term in Eq. (6) that contains the scattering lengtha, is absorbed into the chemical potential � to yield�(p) = p22M� � �; MM� = 1� 2�a2re�: (8)Upon accounting for a contribution � from long-wavelength spin uctuations, relevant e.g. in the case of3D liquid 3He discussed below, these formulas change.Nevertheless, as it was shown in microscopic calcula-tions of the spectrum �(p), performed in Ref. [27], thee�ective mass approximation remains adequate, merelythe e�ective mass is modi�ed toMM� = 1� 2�a2re�� �; (9)with � ' 0:5. With these results, the temperature evo-lution of the single root p1=2(T ) turns out to be identicalto that in ideal Fermi gas.Temperature TM, at which the chemical potentialchanges sign, is straightforwardly evaluated from thenormalization condition (3) and formula (8) to yieldTM ' p2F2M�(�) : (10)As correlations are strengthening, the ratio M�=M in-creases and consequently, temperature TM goes down.Unfortunately, in the vicinity of the QCP where thee�ective mass M� diverges, the e�ective mass approxi-mation begins to fail, because other terms of the Taylorexpansion come into play. For illustration, let us retainonly the next term / (p1�p2)4. In this case, the groupvelocity d�=dp acquires the formd�(p)dp = � pM + � p3p2FM (11)with � > 0 and �, being dimensionless quantities,whose values are supposed to be small. As long as� keeps positive sign, the bifurcation momentum pbequals 0. At the critical point where � vanishes, onehas d�(p ! pF)=dp � pF=M� = �pF=M , so thatM=M� = � � 1. Repeating the same manipulationsthat give rise to Eq. (10), one then �nds TM / �p2F=M ,and therefore TM=�0F � 1.�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011



The low-temperature collapse of the Fermi surface : : : 699When � changes sign, the single-particle spectrum,found with the aid of simple integration of Eq. (11), canbe conveniently rewritten in the form:�(x) = � p2F4M (x� xb)2 � �(T ); (12)where x = p2=p2F and xb = j�j=�. Again the e�ectivemass M� turns out to be enhanced: M�=M ' ��1.The single root pF of T = 0 equation (1) persistsas long as xb < 1=2, otherwise, this equation acquiresthe second root p<(0) = pF(2xb � 1), and the Lan-dau state is rearranged. The single-particle states withp< < p < pF, where pF is a new Fermi momentum,determined by the normalization condition (3), remain�lled, while states with p < p< and p > pF turn outto be empty. With the rise of temperature, both theroots of Eq. (1) move to meet each other at the bifur-cation momentum pb = pFpxb. Critical temperatureTM is straightforwardly evaluated from Eq. (3). In therelevant case xb ' 1, one �ndsTM ' �p2F=M � �0F; (13)implying again that the elevation of temperature resultsin the rapid shrinkage of the FL-domain.Discussion. All the analytically solved models, ad-dressed above, have a common feature: strengtheninginteractions results in the shrinkage of the temperaturedomain where standard FL results hold. This conclu-sion remains valid even if attening of the single-particlespectrum �(p) takes place only for occupied states, thesituation, inherent in many strongly correlated systemswhere the spectrum �(p) has a more complicated struc-ture, (see e.g. Ref. [4]). The shrinkage becomes espe-cially pronounced beyond the QCP [22, 23, 4], whereas mentioned above, the Fermi surface becomes multi-connected. For illustration, let Eq. (1) have n roots atT = 0, implying that the Fermi surface has n sheets.Assuming the single-particle spectrum to be a parabolicfunction between two neighbour roots of Eq. (1), one�nds �max ' �QCPn2 ; (14)where �max = maxj�(p)j inside the Fermi volume, i.e.for occupied states, and �QCP is the QCP Fermi energy.Since, as seen from Eq. (2), the critical collapse condi-tion n(p) < 1=2 is met at TM ' �max, we infer thatbeyond the QCP, critical temperature TM rapidly fallswith increasing the number n of sheets of the Fermi sur-face.Let us now briey discuss the collapse of the Fermisurface in strongly correlated systems, where at T = 0,

there exist at bands. A di�erent name for this disper-sionless portion of the single-particle spectrum �(p) is thefermion condensate (FC) [19]. As long as the FC-densityis small, the collapse is insensitive to the presence of theFC. Although with further increasing the FC-fraction,temperature TM rapidly falls, it keeps a nonzero value,even if all the quasiparticles get to the FC. This con-clusion holds until f1 attains a critical value, at whichthe inequality n(p) < 1=2 is met for any momentum p.In this situation, Eq. (1) has no roots, and hence, suchFermi systems have no Fermi surface even at T = 0.It is instructive to trace how the standard FL-regimethat operates in the T ! 0 limit gives way to a di�erentone at T > TM where Eq. (1) has no roots at all. Forillustration, let us address the spin susceptibility �(T ),neglecting for a while spin-spin correlations. In this case,�(T ) is given by the standard FL-formula�(T ) / 1T Z n(p)[1� n(p)]d�: (15)In the FL-regime, overwhelming contributions to this in-tegral come from a domain j�(p)j � T , adjacent to theFermi surface, and after simple algebra with employingthe FL-formula dp=d� = M�=pF, we arrive at the Pauliresult: �(T ) = const /M�.The collapse of the Fermi surface leads to the recon-struction of the FL-regime. As T increases away fromTM, the chemical potential � becomes more and morenegative, that triggers exponential suppression of theintegral with the n2(p) term on the r.h.s. of Eq. (15).Eventually this contribution becomes negligible, andthe integral (15) is then evaluated in the closed formwith the aid of the normalization condition (3), produc-ing the classical Curie law: �(T ) / �=T . Accountingfor the spin-spin correlations introduces a correction,associated with the Weiss temperature �W, to yield�(T ) / �=(T ��W). Thus from the analysis of the spinsusceptibility, we infer that temperature TM, at whichthe Fermi surface collapses, does specify the topologicalcrossover from the standard FL-regime to a classical-like one. The veri�cation of this conclusion on the baseof experimental data on the speci�c heat C(T ) encoun-ters di�culties, requiring information on the spectrum�(p; T ) at T > TM over a wide momentum range thatremains scarce yet.3D-liquid 3He is one of the systems that experiencesthe topological crossover, discussed in this article. TheFermi energy of this liquid is �0F ' 5K, while the ef-fective mass M�(�) � 3M . At very low temperatures,behaviors of both C(T ) and �(T ) are known to be con-sistent with FL-theory. However, already at T ' 0:2K,the spin susceptibility �(T ) begins to decline, and at�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011 11�



700 V.A.KhodelT � p2F=2M� ' 1:5K its behavior is, indeed, obeys theclassical Curie formula �(T ) / �=T . Meanwhile con-ventionally, the departure of experimental data from theFL result �(T ) = const is attributed to damping e�ects[28]. Alas, how accounting for damping may lead to theCurie behavior of �(T ) in liquid 3He, is hardly explica-ble.Let us now turn to strongly correlated electron sys-tems where the e�ective electron mass M� is enhancedas well. To clear up confusion, caused by the presenceof the lattice �eld in solids, it should be pointed out thatit results in a modi�cation of Eq. (4) that can be doneon the base of FL-relation ( see e.g. Ref. [29]),zT k(p) = zT !(p) + Z f(p;p1)@n(p1)@p1 d3p1(2�)3 ; (16)connecting !- and k-limits of the vertex part T (p), inde-pendently of whether the external �eld presents or not.In this equation, z stands for the renormalization factor.The l.h.s. of this equation is expressed in the closedform: zT k(p) = �M@G�1(� = 0;p)=@p =M@�(p)=@p.As for the quantity zT !(p), it can be written in theMigdal form: zT !(p) = eqp; (17)where eq is the quasiparticle e�ective charge [29] thatequals unity in homogeneous matter due to momentumconservation. In solids, momentum conservation breaksdown, and therefore eq 6= 1. Additionally, in solids,the electron mass M is replaced by the so-called LDAelectron mass MLDA, which cannot be evaluated withgreat precision because of the complicated structure ofthe lattice �eld. Therefore the e�ective charge eq can beabsorbed into MLDA. With this speci�cation, the aboveanalysis can be applied to data on the magnetic suscep-tibility of the heavy-fermion alloy Yb(Rh1�xCox)2Si2,obtained at di�erent dopings x in Ref. [30]. Experi-mental results evidence for gradual attening out of theproduct T�(T ), like in 3D-liquid 3He. However, the au-thors [30] attribute such a behavior to the localization of4f -electrons, notwithstanding the localization is a phasetransition, rather than crossover, and therefore the lo-calization scenario fails to explain gradual attening ofthe function T�(T ).Impact of the collapse of the Fermi surfaceon pairing correlations. Phase transitions, associ-ated with pairing correlations, are traditionally investi-gated on the base of the BCS gap equation. In the caseof s-pairing, this equation reads�(p; T ) = � Z V(p; p1) tanhE(p1)=[2T ]2E(p1) �(p1; T )d�1:(18)

Here �(p) is the gap function, E(p) = p�2(p) + �2(p)is the Bogoliubov quasiparticle energy, and V(p; p1) isthe zero harmonic of the pairing interaction V(p;p1),presented by a set of Feynman diagrams, irreducible inthe particle-particle channel. Upon neglecting its mo-mentum dependence we are led to the well-known BCS-result: �(0) = 
De�2=�; (19)with the dimensionless pairing constant � == pFM�jVL(pF; pF)j=�2 and 
D, the Debye frequency.Critical temperature T �, at which pairing correla-tions die out, is found from homogeneous equationD(p) = � Z V(p; p1) tanh[�(p1; T �)]=[2T �]2�(p1; T �) D(p1)d�1;(20)determining the location of the pole of the two-particleGreen function at the total momentum P = 0 (Thoulesscriterion). Conventional wisdom reads that T � is criticaltemperature of termination of BCS-superconductivity.Indeed, in the weak-coupling limit, Eq. (20) is derivedfrom Eq. (18), setting there � ! 0, and therefore tem-perature T � coincides with BCS critical temperature Tc.In this case, Tc is expressed in terms of the gap magni-tude �(0) as Tc = 0:57�(0): (21)However, with strengthening correlations, the density ofstates, proportional to the e�ective mass M�, increases,and both the quantities �(0) and Tc soar up, while TMgoes down. Eventually, when inequality TM < Tc == 0:57�(0) is met, the coincidence between T � and Tcis destroyed. Indeed, at T > TM, the Gor'kov term�2=["+ �(p)] in the mass operator �(p; ") has no longerpole at the Fermi surface, or equivalently at "! 0, dueto the fact that �(p; T ) > 0 at any momentum p. There-fore at T > TM the Gor'kov term has to be treatedon equal footing with regular contributions to � thatresults in recovering the Dyson-like form of the quasi-particle Green function G(p; ") = [" � �(p)]�1. In thissituation, the Meissner e�ect no longer exists, and su-perconductivity is terminated.To clarify the structure of the pairing correlations inthe domain TM � T < T � where, according to Eq. (20),these correlations still persist, it is worth rememberingthe familiar situation with low-density symmetric nu-clear matter at T = 0 where the deuteron pole in the n�pscattering exhibits itself in full force. In this case, ana-lyzed in numerous theoretical studies [31{35], the pairingcorrection to the chemical potential �(0) turns out to be�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011



The low-temperature collapse of the Fermi surface : : : 701in great excess of the Fermi energy p2F=2M . As a result,the Cooper condensate transforms into a Bose conden-sate of bound states of quasiparticle pairs, the boson ra-dius rB being much less than the interparticle distance r0(the BCS{BEC-crossover). Analogous results have beenobtained in the model of bipolaronic superconductivity[36], where the strength of the electron-phonon attrac-tion is supposed to be large: � � 1. With decreasingdensity � or increasing �, the chemical potential �(0)diminishes and eventually becomes negative, as in theclassical situation: �(0) ! ��0=2 where �0 stands forthe quasimolecule binding energy.Above critical temperature TB, at which the Bosecondensate dies out, a conglomerate of moving boundpairs remains that coexists with ordinary quasiparticles,the well-known feature of hot low-density nuclear mat-ter. This coexistence manifests itself in the enhancementof deuteron formation in deep inelastic nuclear reactions.In unison with this fact, a large diamagnetic response,observed in high-Tc superconductors, is explained, at-tributing it to the normal-state Landau diamagnetism ofthe bipolaron system [37].In contrast to the case of low-density matter, in deal-ing with strongly correlated Fermi systems, the energy�0, determined by the Bethe{Salpeter equationD(p) = � Z V(p; p1) tanh �(p1; T )=(2T )2�(p1; T )� �0(T ) D(p1)d�1;(22)depends on temperature, and as stems from comparisonof Eqs. (20) and (22), �0(T ) vanishes at T = T �.Our �rst goal is to evaluate a critical point of theLifshitz phase diagram for systems with pairing corre-lations, where both the Cooper condensate and the con-glomerate of bound pairs disappear simultaneously thatoccurs provided temperatures TM and T � coincide witheach other. The corresponding critical value �c is foundwith the aid of the Thouless criterion (20). In doingso we employ the above model with the single-particlespectrum (12) where the root p1=2(TM) is assumed tobe located quite far from the origin: p1=2(TM)=pF ' 1.Remembering that at T = TM / 1=M�, the chemical po-tential �(T ) vanishes, we arrive at the following equation1 / �cr �0FM�T � 1Z0 tanh zz3=2 dz; (23)to �nd that in the case T � = TM,�c ' O(1): (24)This result holds beyond the QCP as well. In-deed, by de�nition, all new pockets of the Fermi sur-face that emerge beyond the QCP disappear at T = TM.

Near the bifurcation momentum p1=2(TM), the single-particle spectrum �(p; TM) has the same parabolic form:�(p; TM) / w[p � p1=2(TM)]2 as in Eq. (12), with theprefactor w / 1=M�. Evidently, upon inserting theserelations into Eq.(20) the result (24) is recovered.Evidently, in case M� increases, temperature TMdrops, while T � grows. Thus in the domain of the phasediagram where � ' 1, the BCS superconducting phasetransition is split into two ones. The lower transitioncontinues to be associated with termination of supercon-ductivity, while the upper one turns out to be related tothe extinguishment of the bound pairs.The excess T � � TM can be shown to obey a linearrelation T � � TM = TM(�� �c); (25)determining the range of the region TM < T < T � wherethe quasiparticles coexist with the quasimolecules, whilethe BCS-correlations are completely suppressed.It is instructive to evaluate the binding energy�0(�; T ) at critical temperature TM. At small di�erence(T � � TM)� T �, this energy is calculated from a set oftwo equations, one of which is Eq. (23), while the secondreads 1 / �s �0FM�TM 1Z0 tanh zz1=2(z + �0=TM)dz: (26)Straightforward calculations then yield�0(�; TM) / TM(�� �c)2: (27)One of consequences of this result is that the pairing cor-relations cannot regain its original BCS-form at T = TM,and therefore the BCS critical temperature Tc must belower than TM. The analysis of the interplay betweenthe two types of these correlations at low T < TM, dat-ing back to Ref. [31], is not properly performed yet. Ihope to revert to this question in the future. These re-sults are summarized in the Lifshitz phase diagram of aFermi system with pairing correlations, drawn in �gurewhere the e�ective mass M� changes, while the pairinginteraction V remains unchanged.Let us now turn to pairing correlations in systemswith at bands, being nowadays the subject of widespeculation because of the huge density of states of thesesystems [6, 7, 9]. As we have seen, if in a system with theat band, there exists the point p1=2 where n(p) = 1=2,such a system possesses the Fermi surface, and one canexpect that its superconductivity is described withinBCS-theory. In systems without the Fermi surface whereinequality n(p) < 1=2 is met at any point of momentum�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 7 { 8 2011
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Color online. The phase diagram of a Fermi system withpairing correlations vs. the e�ective mass M�. Thestrength of pairing interaction V is supposed to be smallenough to avoid the regime of bipolaronic superconductiv-ity. The line, separated the state with pairing correlationsfrom the conventional FL-state, is drawn in grey (greenonline). The pseudogap phase is separated from the BCSone by the solid black (blue online) line where the collapseof the Fermi surface occurs. The dashed black (blue on-line) line separates the Landau states from the normal statewithout the Fermi surface. Both temperature T and thee�ective mass M� are given in arbitrary unitsspace, the T = 0 ground state of the system with theat band, being superuid, is a condensate of the boundquasiparticle pairs.In conclusion, in this article, topological crossover inhomogeneous matter, associaited with the collapse of theFermi surface, is analyzed. It is shown that this collapseleads to the replacement of the standard FL-regime bya classical Maxwell-like one. Temperature behavior ofthe spin susceptibility of 3D-liquid 3He is demonstratedto be properly explained within this scenario that im-plies the substantial extention of the temperature regionwhere the quasiparticle pattern of phenomena in 3D-liquid 3He holds. The impact of the collapse of the Fermisurface on pairing correlations in a domain of the Lifshitzphase diagram is examined. The topological crossover,connected with the collapse, is shown to be responsiblefor splitting of the BCS-superconducting phase transi-tion into two ones of the same symmetry. The lowerone is related to termination of BCS-superconductivity,while the upper one is associated with the disapperanceof the conglomerate of the bound pairs, a key feature ofthe pseudogap phenomenon [38].I thank A.Alexandrov, A.Bratkovski, J. Clark,H.Godfrin, P. Schuck, V. Shaginyan, and M. Zverevfor fruitful discussions. This research was supportedby the McDonnell Center for the Space Sciences, byGrants #2.1.1/4540 and NS-7235.2010.2 from the
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