Динамика откольной абляции поверхности GaAs под действием фемтосекундных лазерных импульсов

А. А. Ионин, С. И. Кудряшов¹⁾, Л. В. Селезнев, Д. В. Синицын

Физический институт им. Лебедева РАН, 119991 Москва, Россия

Поступила в редакцию 27 сентября 2011 г.

Откол слоя расплава нанометровой толщины на поверхности GaAs при ее абляции фемтосекундными лазерными импульсами происходит с субнаносекундными задержками и скоростями отлета, зависящими от плотности энергии лазерного излучения, после его полного теплового (гидродинамического) расширения/акустической релаксации. Положение поверхности откола в расплаве определяется глубиной формирования двумерного подповерхностного слоя нанопузырей (нанопены), тогда как сильнее прогретый поверхностный слой расплава выше нанопены частично удаляется в виде парокапельной смеси. На стадии теплового расширения в слое расплава наблюдаются акустические реверберации, которые характеризуют как динамику роста его толщины, так и смещение области кавитации (нанопены) внутри расплава, а кроме того, могут дополнительно стимулировать откол, способствуя кавитации в полностью разгруженном расплаве при прохождении слабой волны разрежения.

1. Механизмы лазерной абляции материалов с использованием ультракоротких (фемтосекундных) лазерных импульсов (УКИ) имеют по отношению к механизмам абляции под действием (суб)наносекундных и более длинных лазерных импульсов свою специфику. Она выражается, в частности, в генерации мощных волн сжатия и разрежения [1,2], способствующих термомеханическому отколу их поверхностного слоя расплава нанометровой толщины при превышении его предела прочности [3-7]. Отлет отражающей частично прозрачной пленки расплава от отражающей поверхности мишени фиксируется путем наблюдения смещения его внешней поверхности с формированием динамических колец Ньютона в отражении [6,8] или ее непосредственной интерферометрии с временным разрешением [6,9], что позволяет определить скорости отлета этой пленки, как правило зависящие от плотности энергии лазерного излучения [6, 8-9]. Ранее предполагалось [3,4], что отрыв пленки расплава происходит в определенной плоскости внутри слоя расплава в определенный момент (~10-10² пс) прохождения мощной волны разрежения, возникающей при разгрузке этого инерционно сжатого слоя и оказывающей определяющее влияние на формирование поверхности откола. Однако фактического сопоставления предсказанных теорией положений плоскости откола и экспериментально измеренных значений глубины кратера до сих пор не проводилось, равно как и детального экспериментального исследования динамики разгрузки расплава и начала

откола его пленки. В то же время в ряде недавних теоретических исследований [5, 6, 9] была предсказана более сложная пространственно-временная динамика кавитации перегретого расплава в формировании поверхности откола внутри него, что предполагает существенную акустическую разгрузку расплава и определенный довольно длительный ($\sim 10^2 - 10^3$ пс [10]) индукционный период формирования паровых нанополостей и их перколяционной коалесценции (освальдовское созревание). Кроме того, теорией отмечалось, что при воздействии на мишень УКИ с плотностью энергии выше порога откола $F_{
m spall}$ кавитация зачастую развивается не только в бегущей волне разрежения с отрицательным давлением, но и в ее отсутствие, при положительных давлениях. Это приводит сначала к абляции более горячего поверхностного слоя расплава путем его фрагментации (околоспинодального выброса парокапельной смеси [4-6]) и лишь затем к отколу более глубокого, но тонкого слоя расплава [9]. В результате физическая картина откольной абляции расплава с учетом наложения на нее фрагментационной абляции представляется довольно сложной и до сих пор не вполне понятной. Поэтому экспериментальные исследования закономерностей динамики откола пленки расплава имеют важное фундаментальное значение для выяснения основных закономерностей как откольной, так и фрагментационной абляции, их соотношения в реальных условиях абляционного воздействия УКИ, определения соответствующих характерных параметров абляционного нанооткола и сопоставления с предсказаниями теории.

¹⁾e-mail: sikudr@lebedev.ru

В настоящей работе сообщается о наблюдении с помощью метода оптической микроскопии с временным разрешением неожиданно большой (до 800 пс) задержки практически полного откола слоя расплава GaAs, который происходит после завершения теплового расширения, акустической разгрузки и кавитационного формирования подповерхностного двумерного слоя нанопузырей (нанопены). Задержка откола и толщина отколотой пленки уменьшаются, а кинематическая скорость последующего отлета пленки расплава, соответственно, увеличивается с ростом плотности энергии УКИ. В ходе термического расширения расплава в нем наблюдаются акустические реверберации, с одной стороны, позволяющие отслеживать динамику роста толщины расплава и положение кавитирующего слоя внутри него, а с другой стороны, дополнительно стимулирующие кавитацию при прохождении в расплаве циркулирующей волны давления в ее фазе разрежения. Полная разгрузка слоя расплава перед отколом, присутствие в нем циркулирующей акустической волны и значительная задержка откола относительно полной разгрузки указывают на сложную динамику кавитации при формировании поверхности откола в расплаве.

2. В наших экспериментах использовалась установка, включающая в себя титан-сапфировый лазер (Авеста Проект), генерирующий с частотой 10 Гц УКИ первой гармоники (ПГ, центральная длина волны 744 нм, ширина полосы генерации на полувысоте около 12 нм) длительностью $\tau_1 \approx 110 \, \mathrm{фc}$ (на полувысоте) с линейной поляризацией и энергией до 8мДж, а также, в генераторе гармоник ATsG-0.75 (Авеста Проект), УКИ второй гармоники (ВГ, центральная длина волны 372 нм, ширина полосы генерации на полувысоте около 3 нм) длительностью $\tau_2 \approx 90 \, {\rm \phi c}$ (на полувысоте) с той же поляризацией и энергией до 2 мДж [11]. Поперечное пространственное распределение лазерного поля УКИ соответствовало ТЕМ₀₀-При этом УКИ ПГ с *р*-поляризацией фокумоле. сировались стеклянной линзой (фокусное расстояние $f=500\,
m {mm}$) под углом 45° в пятно с диаметрами эллипса $\varnothing_{1/\mathrm{e},x} \approx 0.17\,\mathrm{MM}$ и $\varnothing_{1/\mathrm{e},y} \approx 0.12\,\mathrm{MM}$ на атомногладкой поверхности коммерческой пластины GaAs толщиной около 0.5 мм. Последняя располагалась на трехмерной моторизованной подвижке с компьютерным управлением непосредственно перед кварцфлюоритовым микрообъективом (NA = 0.17) линии зондирования (рис.1) практически в его фокусе. В данной схеме оптической микроскопии с временным разрешением [12] абляция осуществлялась мощными жестко сфокусированными УКИ ПГ, а зондирование – слегка расфокусированными УКИ ВГ ($\varnothing_{1/e,2\omega} \approx$ pprox 0.3 мм > $arnothing_{1/\mathrm{e},xy}$), прошедшими оптическую линию задержки с $\Delta t = (0{-}3)$ нс.

Чтобы избежать деградации распределения плотности энергии на поверхности мишени, связанной с самофокусировкой УКИ в воздухе и сопутствующим ей эффектом рассеяния на плазме [13], абляция мишени GaAs производилась при малой энергии УКИ (100 мкДж, пиковая плотность энергии $F_0 \approx$ $\approx 0.6 \, \mathrm{Д} \mathrm{ж} / \mathrm{cm}^2)$, установленной с помощью отражательного поляризационного ослабителя (Авеста Проект) и контролируемой с помощью калиброванного фотодиода DET-210 (Thorlab), засвечиваемого слабым лазерным бликом через поворотное диэлектрическое зеркало. Одноимпульсный характер воздействия УКИ ПГ обеспечивался путем использования электромеханического затвора, а также путем линейного перемещения поверхности мишени от импульса к импульсу на расстояние 0.5 мм, превышающее Ø_{1/е.xy}. Возникающие кратеры (вставка (b) на рис. 1) исследовались с помощью оптического профилометра NewView 700s (Zygo) для определения зависимости их глубины Х от локальной плотности энергии F УКИ ПГ на поверхности GaAs.

3. Оптические микроснимки поверхности GaAs для различных задержек УКИ ВГ (вставка (а) на рис. 1) и построенные по их данным временные профили отражения УКИ ВГ $R_{2\omega}(\Delta t)$ для различных значений $F > 0.24 \, \text{Дж} / \text{см}^2$ показывают общую картину плавления, откольной и фрагментационной абляции материала (рис. 2). В общих чертах при превышении порога $F_{f\,m}pprox 0.24\,{
m [J}
m {
m ж}/{
m cm}^2$ для задержек $\Delta t>0.6\,{
m nc}$ имеет место быстрый рост величины $R_{2\omega}$ от начального уровня $R_{2\omega,0} \approx 0.45$ с достижением плато отражения $R_{2\omega,\max} \approx 0.61$ (рис. 2), который можно соотнести со сверхбыстрым плавлением материала с образованием металлической фазы расплава [14] (кривая для $F = 0.52 \, \text{Д} \text{ж}/\text{см}^2$). Плавление материала подтверждается соответствием величины $R_{2\omega,\max}$ величине отражения $R_{2\omega,\,\mathrm{melt}}pprox 0.61{-}0.62$ на данной длине волны для равновесного термического расплава GaAs (кривые для F = 0.18 и $0.24 \, \text{Дж/см}^2$), который формируется при $F \geq F_{sm} \approx 0.10 \, \mathrm{Д} \mathrm{ж} / \mathrm{cm}^2$ на временах $\Delta t > 3$ пс (рис. 2) (см. аналогичную величину F_{sm} для ИК УКИ и идентификацию равновесного плавления GaAs с помощью метода рентгеновской дифракции в работе [15]). После плато $R_{2\omega,\max}$ на рис. 2 (кривая для $F = 0.52 \, \mathrm{Д} \mathrm{ж/cm}^2$) отмечается плавный спад отражения на временах от 3 до 20-500 пс (в зависимости от F), который, в соответствии с теорией Мотта для перехода металл-диэлектрик, можно связать с тепловым расширением расплава, кавитацией и гидродинамическим разлетом его перегретого

Рис. 1. Схема экспериментальной установки для оптической микроскопии с временным разрешением: ВS – делители пучка, AC – автокоррелятор, DA, RA – трансмиссионный бинарный и отражательный непрерывный (поляризационный) ослабители пучка, EM – измеритель энергии, HG – генератор оптических гармоник, BD – поглотитель, M – зеркало, L – линзы, PD – фотодиод, CCD – ПЗС-камера, 3D-MS – трехмерная моторизованная подвижка, DO – цифровой осциллограф, PC – компьютер для сбора данных и управления экспериментом. (a), (b) – Промежуточный ($\Delta t \approx 0.8$ нс) и окончательный микроснимки поверхности GaAs сверху после воздействия одного УКИ с пиковой плотностью энергии $F_0 \approx 0.6 \, Дж/см^2$ (размеры 300 × 200 мкм²). (c) – Профиль вертикального сечения микроснимка области возбуждения на рис. (a)

поверхностного слоя в виде наногетерогенной парокапельной смеси [16]. После достижения минимума величина $R_{2\omega}$ практически не изменяется вплоть до задержек $\Delta t = (120 - 800)$ пс, зависящих от *F*. Затем она начинает снова расти, сопровождаемая осцилляциями большой амплитуды (рис. 2, кривая для $F = 0.52 \, \text{Дж} / \text{см}^2$), период которых также зависит от F. Указанные субнаносекундные осцилляции отражения происходят в области значений F выше порога абляции ($F_{\rm spall} \approx 0.32 \, \text{Дж}/\text{см}^2$, вставка (с) на рис. 1), где формируется кратер, а в динамике наблюдаются интерференционные кольца Ньютона (вставки (а) и (с) на рис. 1) вследствие отражения пробного УКИ ВГ от внешней поверхности существенно отражающей, но частично прозрачной и довольно тонкой (см. глубины кратера $X \approx (30-50)$ нм на рис. 5) отлетающей пленки расплава и хорошо отражающей нагретой (или даже расплавленной) поверхности мишени под ней [3, 14, 16].

При более детальном рассмотрении во всем диапазоне $F = (0.18 - 0.56) \, \text{Дж/см}^2$ на субнаносекундных временах впервые наблюдаются дополнитель-

ные отчетливые слабозатухающие осцилляции $R_{2\omega}$ с переменным периодом $T_{\rm rev}$ в интервале $10-300\,{\rm nc}$ (рис. 2, 3), вызванные, как следует из временного масштаба и слабодиссипативного характера осцилляций, реверберациями акустических волн в поверхностном слое материала, где произошли выделение энергии лазерного излучения и ее транспорт в объем образца, благодаря эффекту пьезоотражения (частный случай пьезооптического эффекта) [17]. Ранее мощные волны давления наблюдались в полупроводниках в режимах мощного электронного фотовозбуждения/нагревания и сверхбыстрого плавления под действием УКИ [18] в результате явлений электронфононного взаимодействия электрон-дырочной плазмы с кристаллической решеткой через акустический потенциал деформации [17, 19], плавления как фазового превращения I рода с изменением объема, а также значительного нагревания и расширения расплава [19], или даже комбинации этих эффектов. Однако периодичность акустических ревербераций в слое расплава никогда ранее не отслеживалась. В диапазоне значений F выше порога относительно мед-

Рис. 2. Временные зависимости коэффициента отражения GaAs $R_{2\omega}(\Delta t)$ для значений F [Дж/см²]: 0.08 (сплошная кривая), 0.18 (темные квадраты), 0.24 (светлые квадраты), 0.52 (светлые кружки). Буквы $R_{2\omega,0}$, $R_{2\omega,max}$, $R_{2\omega,melt}$ и $R_{2\omega,min}$ показывают, соответственно, значения коэффициента отражения для твердого материала до возбуждения, после его сверхбыстрого плавления при $F > F_{fm} \approx 0.24$ Дж/см², после его квазиравновесного плавления при $F_{sm} < F < F_{fm}$ ($F_{sm} \approx 0.10$ Дж/см²), а также в процессе фрагментационной абляции ($F_{\rm frag} \approx 0.49$ Дж/см²). Величины $T_{\rm spall}$ и $\Delta R_{2\omega}$ – задержка начала откола пленки расплава и амплитуда интерференционной модуляции (колец Ньютона), а $T_{\rm rev,1}$ – период акустических ревербераций в расплаве при F = 0.18 Дж/см² < $F_{\rm spall}$ (темные квадраты)

Рис. 3. Участки зависимостей $R_{2\omega}(\Delta t)$, демонстрирующие акустическую модуляцию с переменным периодом $T_{\rm rev,2}$ (область светлой штриховки) и порог откола $T_{\rm spall}$ (область темной штриховки), для различных значений $F > F_{\rm spall}$

ленного ($\Delta t > 3 \, {\rm nc}$, см. кривые для F = 0.18 и $0.24 \, {\rm Д} {\rm ж}/{\rm cm}^2$ на рис. 2) квазиравновесного плавления GaAs ($F_{sm} \approx 0.10 \, {\rm J} {\rm ж}/{\rm cm}^2$), но ниже порога абля-

Письма в ЖЭТФ том 94 вып. 9-10 2011

ции $F_{\rm spall}$ акустические реверберации $T_{\rm rev,1}$ на субнаносекундных временах происходят в поверхностном слое расплава материала, толщина которого растет на субнаносекундных временах после воздействия УКИ, следуя распространению тепловой волны (концентрационной волны электрон-дырочной плазмы) и кинетике движения фронта плавления в материале. Квазиравновесное плавление GaAs создает разницу акустических импедансов жидкого ($ho_m C_m pprox$ $5.7\cdot 10^3\,{\rm kr}\,/{\rm m}^3\cdot 2.26\,{\rm km}/c\approx~1.3\cdot 10^7\,{\rm kr}\,/{\rm m}^2{\rm \cdot c}~[20])$ и твердого ($\rho_s C_s \approx 5.3 \cdot 10^3 \, {\rm kr}/{\rm m}^3 \cdot 4 \cdot 10^3 \, {\rm m/c} = 2.1 \cdot 10^3 \, {\rm m/c}$ $10^7\,{
m \kappa r}/{
m M}^2\cdot{
m c}~>~
ho_m C_m~[21])$ материала (где $ho_{s,m}$ и $C_{s,m}$ – массовая плотность и скорость продольных акустических волн в твердом и жидком GaAs). Это приводит к отражению акустических волн с неизменной фазой на фронте плавления, но с обратной фазой на свободной границе GaAs воздух [19]. В результате модуляции $R_{2\omega}$ с одинаковой фазой (например, максимумы или минимумы) появляются после двойного кругового обхода акустической волной поверхностного слоя расплава материала, т.е. зависимость $T_{
m rev,1}(\Delta t)$ характеризует пробег фронта плавления в образце вплоть до начала откола пленки расплава с положением фронта $Y_1(\Delta t) = \frac{1}{4}C_m T_{\text{rev},1}(\Delta t)$ (рис. 4), где максимальная величина Y₁ зависит от F, и со ско-

Рис. 4. Смещение фронта плавления (Y_1 , темные квадраты) и подповерхностной области кавитации (Y_2 , светлые треугольники, начало откола – $T_{\rm spall}$) со временем Δt для локальных значений плотности энергии 0.26 и 0.55 Дж/см². Линейная аппроксимация кривой $Y_1(\Delta t)$ в двойных логарифмических координатах с угловым наклоном 0.94±0.02. Вставка: эскиз слоистой структуры фрагментирующего (fragmentation zone) и кавитирующего (cavitation zone) расплава

ростью $\approx 4 \cdot 10^2$ м/с, сопоставимой с ранее наблюдавшимися значениями [8, 18]. Временные зависимости $Y_1(\Delta t)$ для различных значений F демонстрируют линейный, а не коренной рост Y_1 (угловой наклон зависимости $Y_1(\Delta t)$ в двойных логарифмических координатах 0.94 ± 0.02). Это может указывать на кинетическое лимитирование движения фронта плавления скоростью фазового превращения в достаточно однородно перегретом веществе, а не скоростью распространения предшествующей тепловой волны. Однородность прогрева GaAs на глубинах $Y_1 < 200$ нм от поверхности (рис. 5) согласуется с известными зна-

Рис. 5. Зависимости глубины кратера X (сплошная кривая) и подповерхностной области кавитации (Y_2 , светлые треугольники), а также толщины расплава (Y_1 , темные квадраты) от величины локальной плотности энергии F с порогами откольной ($F_{\rm spall}$) и фрагментационной ($F_{\rm frag}$) абляции. Вставка: зависимость амплитуды интерференционной осцилляции отражения (колец Ньютона) $\Delta R_{2\omega}$ от F с областями слабого линейного уменьшения (прямая линия) и резкого спада, отвечающего началу фрагментационной абляции

чениями эффективной глубины поглощения ИК УКИ в материале, $\delta(800 \text{ нм}) \approx 275 \text{ нм}$ [15].

С другой стороны, для более высоких значений, $F > F_{
m spall},$ после плато $R_{2\omega,
m max}$ плавный спад отражения на зависящих от величины F временах $\Delta t <$ $<(20{-}500)$ пс (рис. 2,3), который в настоящей работе связывается через эффект пьезоотражения с тепловым расширением расплава, кавитацией и гидродинамическим разлетом его перегретого поверхностного слоя, также впервые обнаруживает дополнительную отчетливую слабо затухающую модуляцию с переменным периодом T_{rev,2}, нарастающим в интервале 3-40 пс (рис. 3) вплоть до появления модуляции $R_{2\omega}$, связанной с кольцами Ньютона (рис. 1). Малость $T_{\mathrm{rev},2} \ll T_{\mathrm{rev},1}$ и существование наблюдаемых коротких ревербераций вплоть до момента откола позволяют связать их с циркуляцией переотраженной акустической волны на предоткольной стадии в тонкой поверхностной пленке расплава, еще не отлетающей, но уже отделенной от остального, более холодного расплава и твердой мишени двумерным слоем нанопузырей (нанопены) (рис. 4, вставка), наблюдавшейся в предшествующих молекулярно-динамических (МД) исследованиях [4-6,9]. Такая пленка расплава должна иметь две свободные границы, обеспечивающие появление синфазных модуляций $R_{2\omega}$ с периодом $T_{rev,2}$ при толщине пленки $Y_2 = \frac{1}{2}C_m T_{rev,2}$ (предположительно в такой пленке сохраняется характерная для расплава скорость звука $C_m \approx 2.2$ км/с [20]). Действительно, сопоставление окончательных величин Y₂ и глубин кратера X для разных значений F на рис. 5 показывает их хорошее количественное согласие для $F \geq F_{
m spall},$ тогда как при $F \leq F_{
m spall}$ появление подповерхностного слоя нанопены возможно и без последующего откола пленки [6,9]. Интересно, что положение слоя нанопены смещается в глубь расплава как с ростом Δt (рис. 4), так и с ростом F (рис. 5), однако при $F > 0.49 \, \text{Дж/см}^2$ опять приближается к его поверхности. Первая тенденция была ранее предсказана в результате МД-расчетов [4] как следствие охлаждения поверхностного слоя расплава в ходе его адиабатического теплового расширения (и, по-видимому, частично поверхностного испарения). Вторая же ранее никогда не отмечалась, но вполне ожидаема вследствие увеличения глубины и амплитуды температурного поля в расплаве с ростом F.

Далее, начало сильных периодических осцилляций $R_{2\omega}$ после полной разгрузки слоя расплава (спустя $T_{\text{spall}} = (120 - 800)$ пс) можно связать с отколом пленки, а их периодичность - с периодическим выполнением условий максимума/минимума интерференции $(n^*L_{\text{spall}} = 0.5m\lambda_{2\omega}, n^*L_{\text{spall}} =$ $\lambda_{2\omega}=0.25(2m\!+\!1)\lambda_{2\omega})$ для увеличивающегося промежутка L_{spall} между внешней поверхностью отлетающей пленки расплава и поверхностью мишени, заполненного при отколе преимущественно парами вещества с показателем преломления $n^* \approx 1$ [8]. Таким образом, наблюдая на рис. 2 максимумы и минимумы $R_{2\omega}$ для различных задержек Δt , можно построить для различных значений F кривые смещения поверхности отлетающей пленки расплава (рис. 6) и по их производным определить кинематические скорости отлета V_{spall} [6-8]. Величины V_{spall} , отвечающие начальным участкам отлета, как и в предыдущих работах [6-8], возрастают с ростом F. Амплитуды V_{spall} лежат в интервале 0.2-0.6 км/с (рис. 6), что для массовой плотности расплава GaAs $\rho_m \approx 5.7 \, \mathrm{r/cm^3} \, [20]$ соответствует разгоняющему пленку давлению порядка $ho_m V_{
m spall}^2 pprox (0.1{-}1)$ ГПа (на уровне критических давлений большинства материалов). С учетом заверше-

Рис. 6. Оптический путь $n^*L_{\rm spall}$ отколотой пленки расплава с изменением времени Δt для разных значений локальной плотности энергии F [Дж/см²], а также прямые линейной аппроксимации крайних кривых для максимального и минимального значений $F > F_{\rm spall}$ с угловыми наклонами (скоростями $V_{\rm spall}$), приведенными в рамках

ния разгрузки расплава на момент откола это предполагает существенную роль кавитации при формировании плоскости откола. Это предположение подтверждается и значительными задержками начала откола, $T_{\text{spall}} = (120 - 800)$ пс, см. рис. 6. Они показывают сильную зависимость от F и, как свидетельствуют продолжительные плато $R_{2\omega}$ в области минимумов (рис.2, 3), обусловлены не только полным тепловым расширением и сопутствующей акустической релаксацией слоя расплава в предшествующих областях спада $R_{2\omega}$, но и, по-видимому, продолжительной сложной динамикой формирования в слое расплава двумерного слоя нанопены [6,9]. Известно, что процесс кавитации на таком пространственном масштабе существенно осложняется эффектом поверхностного натяжения и потому возможен, особенно при такой высокой скорости кавитации (с учетом $T_{
m spall} pprox (10^2 - 10^3)$ пс), только в околокритической области [22].

Примечательно, что при превышении величины $F \approx 0.49 \, \text{Д} \text{ж}/\text{сm}^2$ как амплитуда интерференционных осцилляций $\Delta R_{2\omega}$ (рис. 5, вставка), так и максимальная толщина слоя откалывающегося расплава Y_2 начинают уменьшаться при монотонно возрастающей глубине абляции X (рис. 5). Одновременно при $F > 0.49 \, \text{Д} \text{ж}/\text{сm}^2$ отражение мишени падает до минимального значения $R_{2\omega,\min} \approx (0.02-0.03)$, демонстрируя отражение выраженного диэлектрика или сильно разреженной "эффективной" среды. Предшествующие МД-расчеты показали [4–6,9], что выше поро-

га откольной абляции при значительном перегреве может развиваться абляция фрагментационного характера. В этом случае перегретый поверхностный слой расплава в результате интенсивной кавитации или закритического прямого перехода жидкость-пар в ходе адиабатического расширения превращается в гетерогенную парокапельную смесь, которая необратимо разлетается в окружающее пространство впереди откалывающейся пленки расплава и действительно должна оптически экранировать интерференционные кольца Ньютона на поверхности последней, уменьшая их амплитуду (рис. 5, вставка). Такой парокапельный разлет вещества вносит наряду с откольным свой вклад в величину X, но соразмерно уменьшает вклад Y₂ откольного механизма (рис. 5). Следовательно, в условиях нашего эксперимента значение $F \approx 0.49 \, \mathrm{Д}\mathrm{ж}/\mathrm{cm}^2$ можно сопоставить с порогом F_{frag} фрагментационной абляции GaAs. При этом, как и в предшествующих работах для GaAs и других материалов [16, 23], соотношение порогов F_{frag} и F_{spall} оказывается близким к 1.5. Однако порог F_{frag} в нашей работе определяется более точно по количественным критериям начала уменьшения амплитуды интерференционных максимумов колец Ньютона и появления разности значений глубины абляции и толщины пленки расплава над нанопеной.

4. Таким образом, в настоящей работе впервые экспериментально исследована динамика поверхностного плавления мишени GaAs под действием ультракоротких лазерных импульсов, а также кавитации и абляции его расплава, выражающаяся в постепенном смещении кавитирующего слоя "нанопузырьки в жидкости" от поверхности внутрь расплава, охлаждающегося вследствие адиабатического теплового расширения и испарительного охлаждения его поверхности, и формировании там слоя нанопузырей (нанопены), определяющего положение поверхности его откола. Сам откол происходит после полной разгрузки расплава с задержкой и скоростью отлета, увеличивающимися с ростом плотности энергии лазерного излучения выше порога откола. При превышении порога откольной абляции примерно на 50% начинается фрагментационная абляция поверхности расплава, когда вследствие интенсивной кавитации или закритического прямого перехода жидкость-пар поверхность расплава приобретает структуру "нанокапли в паре" и необратимо разлетается в окружающую среду, соразмерно уменьшая толщину откалывающейся пленки расплава при слабом монотонном росте глубины абляции. Эти экспериментальные наблюдения подтверждают предсказания предшествующих молекулярно-динамических расчетов и проясняют фундаментальные механизмы откольной и фрагментационной фемтосекундной лазерной абляции материалов.

Работа поддержана Российским фондом фундаментальных исследований (проекты # 10-08-00941-а, 11-02-01202-а и 11-08-01165-а).

- М.Б. Агранат, С.И. Анисимов, С.И. Ашитков и др., Письма в ЖЭТФ 91, 517 (2010); С.И. Ашитков, М.Б. Агранат, Г.И. Канель др., Письма в ЖЭТФ 92, 568 (2010).
- А. А. Ионин, С. И. Кудряшов, С. В. Макаров и др., Письма в ЖЭТФ 94, 35 (2011).
- K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys. Rev. Lett. 81, 224 (1998).
- E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A 79, 1643 (2004).
- A. K. Upanhuyay, N. A. Inogamov, B. Rethfeld, and H. M. Urbassek, Phys. Rev. B 78, 045437 (2008).
- Н. А. Иногамов, В. В. Жаховский, С. И. Ашитков и др., ЖЭТФ 134, 5 (2008).
- K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., SPIE Proc. **3343**, 46 (1998); D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Sci. **109**, 1 (1997).
- V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, and D. von der Linde, J. Opt. Soc. Am. B 23, 1954 (2006).
- B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, Phys. Rev. B 82, 064113 (2010).

- A. M. Lindenberg, S. Engemann, K. Gaffney, and K. Sokolowski-Tinten, Phys. Rev. Lett. 100, 135502 (2008).
- В. Д. Зворыкин, А. А. Ионин, С. И. Кудряшов и др., Письма в ЖЭТФ 88, 10 (2008).
- 12. С. И. Кудряшов, В. И. Емельянов, ЖЭТФ 121, 113 (2002).
- А. А. Землянов, А. А. Ионин, Ю. Э. Гейнц и др., ЖЭТФ 138, 822 (2010).
- K. Sokolowski-Tinten, J. Bialkowski, M. Boing et al., Phys. Rev. B 58, R11805 (1998).
- A. Cavalleri, C. W. Siders, C. Rose-Petruck et al., Phys. Rev. B 63, 193306 (2001).
- K. Sokolowski-Tinten, S.I. Kudryashov, V. Temnov et al., Springer Series in Chemical Physics 66, 425, Springer, Berlin, 2000.
- 17. П. Ю, М. Кардона, Основы физики полупроводников, М.: Физматлит, 2002.
- K. Sokolowski-Tinten, C. Blome, C. Dietrich et al., Phys. Rev. Lett. 87, 225701 (2001); M. Nicoul, V. Shymanovich, A. Tarasevich et al., Appl. Phys. Lett. 98, 191902 (2011).
- В. Е. Гусев, А. А. Карабутов, Лазерная оптоакустика, М.: Наука, 1991.
- 20. G. N. Kozhemyakin, Ultrasonics 35, 599 (1998).
- И. С. Григорьев, Е. З. Мейлихов, Физические величины, М.: Энергоатомиздат, 1991.
- В. П. Скрипов, А. В. Скрипов, УФН 128, 193 (1979);
 S. I. Kudryashov, K. Lyon, and S. D. Allen, Phys. Rev. E 75, 036313 (2007).
- Б. Ретфельд, К. Соколовски-Тинтен, В. Темнов и др., Изв. РАН, Сер. физич. 65, 521 (2001).