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 2011 December 10The analytical singlet �4s QCD contributions into the e+e�-annihilationAdler function and the generalized Crewther relationsA.L.Kataev1)Institute for Nuclear Research RAS, 117312 Moscow, RussiaSubmitted 17 October 2011Resubmitted 1 November 2011The generalized Crewther relations in the channels of the non-singlet and vector quark currents are con-sidered. These relations follow from the double application of the operator product expansion approach tothe same axial vector{vector{vector triangle amplitude in two regions, adjoining to the angle sides (x; y) (orp2; q2). We assume that the generalized Crewther relations in these two kinematic regimes result in the ex-istence of the same perturbation expression for two products of the coe�cient functions of annihilation anddeep-inelastic scattering processes in the non-singlet and vector channels. This feature explains the conformalsymmetry motivated cancellations between the singlet �3s corrections to the Gross{Llewellyn Smith sum ruleSGLS of �N deep inelastic scattering and the singlet �3s correction to the e+e�-annihilation Adler function DVAin the product of the corresponding perturbative series. Taking into account the Baikov{Chetyrkin{Kuhn 4-thorder result for SGLS and the perturbative e�ects of the violation of the conformal symmetry in the generalizedCrewther relation, we obtain the analytical contribution to the singlet �4s correction to the DVA -function. Itsa-posteriori comparison with the recent result of direct diagram-by-diagram evaluation of the singlet 4-th ordercorrections to DVA - function demonstrates the coincidence of the predicted and obtained �23 -contributions to thesinglet term. They can be obtained in the conformal invariant limit from the original Crewther relation. There-fore, on the contrary to previous belief, the appearance of �3-terms in the perurbative series in quantum �eldtheory gauge models does not contradict to the property of the the conformal symmetry and can be consideredas regular feature. The Banks{Zaks motivated relation between our predicted and the obtained directly 4-thorder corrections is mentioned. It con�rms the expectation, previously made by Baikov{Chetykin{Kuhn, thatat the 5-loop level the generalized Crewther relation in the channel of vector currents may receive additionalsinglet contribution, which in this order of perturbation theory is proportional to the �rst coe�cient of theQCD �-function.Quite recently the 4-th order perturbative coe�-cients to the 
avour non-singlet (NS) part of the e+e�-annihilation Adler D-function DNSA and to the NSBjorken sum rule SBjp of the deep-inelastic scattering(DIS) process of polarised leptons on nucleons were eval-uated symbolically within general SU(Nc) colour gaugegroup [1]. The explicit analytical expression for the 4-th perturbative coe�cient of SBjp in the MS-schemewas obtained in [2] by inverting the order a4s analyticalresults for 1=SBjp, presented in [1]. Apart of the phe-nomenological applications to the analysis of the experi-mental data for the semi-hadronic width of � -lepton [3]2)and of the experimental data for the Bjorken polarisedsum rule [5], the MS-scheme results of [1] have also im-portant theoretical consequences. As was emphasisedin [1, 2], the analytical SU(Nc)-group expressions of [1]play essential role in the veri�cation of the discovered in[6] �-function factorisable representations for the confor-1)e-mail: kataev@ms2.inr.ac.ru2)Note, that in this analysis the SU(3) variant [4] of the SU(Nc)expression for DNSA [1] was used.

mal symmetry breaking term in the QCD-generalizationof the original quark-parton model Crewther relation [7].The validity of this discovery of [6] was proved in theMS-scheme in all orders of perturbation theory [8] (forsome additional discussions see the review of [9]).It is worth to stress, that to apply self-consistentlythe 4-th order perturbative results of [1] in the analy-sis of the e+e� ! hadrons data above thresholds ofcharm quarks production and in the �ts of the preciseLEP-data for Z0 ! hadrons decay width as well, it isnecessary to �nd still unknown 4-th order singlet (SI)contribution to the Adler functions DA of vector quarkcurrents. In the previous a3s order of perturbation theorythese types of corrections were analytically evaluated in[10] and con�rmed later in [11] and [12].In this work the symbolical expressions for the 4-th order SI contributions to DA-function are predicted.Three important theoretical inputs will be used:� the universality of the original Crewther relation[7], which is valid in the conformal invariant limitnot only for the product of the coe�cient functionsof DNSA -function and NS DIS Bjorken sum rule,�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011 867



868 A.L.Kataevbut for the product of the coe�cient functions DVAof the Adler D-function of vector currents and ofthe coe�cient function of the Gross{LlewellynDISsum rule for neutrino-nucleon DIS as well [13];� the statement of [14] that the product of the nor-malised perturbative coe�cient functions of thevector currents D-function and of the Gross{Llewellyn sum rule is identical to the MS-schemeQCD expression of the generalized Crewther rela-tion in the NS-case;� the obtained in the case of the general SU(Nc)-group analytical expressions for the O(a4s) 
avourSI perturbative contributions to the Gross{Llewellyn Smith sum rule in the MS-scheme [15]and the previous O(a3s) order scheme-independentSI correction to this sum rule which was analyti-cally evaluated in [16].Consider now physical quantities to be analysed inthis work. Perturbative expression for the e+e� AdlerD-function in the vector channel has the following formDVA(as) = Q2 Z 10 Re+e�(s)(s+Q2)2 ds = DNSA (as) +DSIA (as);(1)where the functions in the r.h.s. of Eq. (1) are de�nedas DNSA (as) = dR�XF Q2F�CNSA (as);DSIA (as) = �XF QF�2CSIA (as): (2)Here, QF are the electric charges of quarks and dR is thedimension of SU(Nc)-group representation (for detailedde�nitions and studies see e.g. Ref. [17]). It enters in thenormalisation factor of the NS contribution to the Adlervector function and do not enter in the normalisationfactor of the SI-part of Eq. (1).Within the fundamental representation of SU(Nc)-group one has dR = Nc. The coe�cient functions CNSAand CSIA have the following perturbation expansionsCNSA (as) = 1 +Xn�1 dNSn ans ; CSIA (as) =Xn�3 dSIn ans : (3)Within perturbation theory the polarised Bjorken DISsum rule is de�ned asSNSBjp(as) = Z 10 glp�ln1 (x;Q2)dx = ga6 CNSBjp(as); (4)

where the coe�cient function can be expressed asCNSBjp(as) = 1 + Xm�1 cNSm ams : (5)The known coe�cients d1{d4 and c1{c4 contain the pow-ers of SU(Nc) colour group structures CF , CA, TFNFand dabcd [1], where CF and CA are the Casimir opera-tors, NF is the number of 
avours, TF is the normalisa-tion factor of the trace of product of two SU(Nc) gener-ators and dabcd are the structure constants of SU(NC)-group.The Gross{Llewellyn Smith sum rule of �N DIS canbe de�ned asSGLS(as) = 12 Z 10 F �p+�p3 (x;Q2)dx == 3CGLS(as) +O� 1Q2� ; (6)where its pure perturbative coe�cient function can bedecomposed to the NS- and SI-parts asCGLS(as) = CNSGLS(as) + CSIGLS(as): (7)Note, that for the NS-part the following identity holds:CNSGLS(as) = CNSBjp(as) (8)The validity of Eq. (8) was �rst proved within dimen-sional regularization in [18] by demonstration that thel.h.s and r.h.s. of Eq. (8) coincide after proper de�nitionof axial Ward identities in QCD. The necessity of per-forming extra �nite renormalizations in the axial-vectorchannel were understood in the process of studies of 2-loop corrections to dimensionally regularized [19] AdlerD-functions for the case of axial-vector and vector quarkcurrents in the independent, but simultaneous works ofRefs. [20, 21].As was demonstrated in Ref. [16], at the 3-rd order ofperturbation theory the coe�cient function of the Gross{Llewellyn Smith sum rule of Eq. (7) starts to di�er fromCNSBjp(as) due to the appearance of the additional SI con-tributions. They enter into the expression of the follow-ing coe�cient function:CSIGLS(as) =Xn�3 cSIn ans : (9)Its �rst scheme-independent term has the following ana-lytical form [16]cSI3 = dabcdabcNFdR cSI3;1 = dabcdabcNFdR �� 11192 + 18�3�:(10)�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



The analytical singlet �4s QCD : : : 869Notice, the appearance of SU(Nc)-group structuredabcdabc. Next coe�cient was analytically evaluated inthe MS scheme in [15]. It has the following representa-tion:cSI4 = dabcdabcNFdR �CF cSI4;1 + CA cSI4;2 + TFNF cSI4;3�;(11)where all coe�cients were analytically evaluated in [15].Consider now the concrete consequences of the con-formal symmetry and of the e�ects of its violation in thetheory of strong interactions. The validity of the confor-mal invariance in the quark-parton model leads to theexistence of the Crewther relation [7]. In the renormal-izable gauge quantum �eld models (say QED or QCD)this relation can be written down asCNSA (as)� CNSBjp(as)jc�i = 1: (12)Here, due to the property of the the conformal invari-ance, as does not depend on transferred momentum Q2.Note that the similar Crewther relation is also validfor the product of the DVA and the Gross{LlewellynSmith sum rule coe�cient functions:CVA (as)� CGLS(as)jc�i = 1: (13)It is based on exact x-space derivation of [13] (compareEq. (2.9a) with Eq. (2.9b) in [13]).Originally Crewther relation in the NS and vectorchannels was obtained in [7] and analysed in more de-tails in the work of [13] by means of double applicationof the operator product expansion (OPE) approach forthe vector{vector{axial{vector 3-point functionT abc���(x; 0; y) = h0jT [V a� (x)V b� (0)Ac�(y)]j0i; (14)where V a� =  (x)
�(�a=2) (x) and Ac� ==  (x)
5
�(�c=2) (x). In the momentum spacethe amplitude of Eq. (14) can be written down asT abc���(p; q) == i Z h0jTV a� (x)V b� (0)Ac�(y)j0ieipx+iqydxdy == dabcT���(p; q): (15)Thanks to the studies of Ref. [22] it was understood thatin the conformal-invariant limit this 3-index tensor isproportional to the fermion triangle one-loop graph, con-structed from massless fermions, namelyT abc���(x; 0; y) = dabcN�1�loop(x; 0; y): (16)Here N is a number, which is proportional to anomalousconstant, related to �0 ! 

 decay [23, 24]. Fixing

N = 1 and keeping in mind this physical relation to theamplitude of �0 ! 

 decay, we de�ne the coe�cientfunction of the Adler D-function in the vector channelby taking the limit of equal charges of all quarks 
avoursand re-writing Eq. (1) asDVA (as) = dR�XF Q2F�CVA (as); (17)whereCVA (as) = CNSA (as) + �PF QF�2dR�PF Q2F�Xn�3 dSIn ans == CNSA (as) + NFdR Xn�3 dSIn ans : (18)The coe�cient dSI3 is known from the analytical calcula-tions of [10{12] and readsdSI3 = dabcdabcdSI3;1 = dabcdabc� 11192 � 18�3�: (19)Consider now the generalizations of Crewther rela-tion in the channels of vector and NS quark currents.They can be de�ned asCVA [as(Q2)]� CGLS[as(Q2)] = 1 +�V;GLScsb [as(Q2)](20)andCNSA [as(Q2)]� CNSBjp[as(Q2)] = 1 +�NScsb[as(Q2)]: (21)The expression for the conformal symmetry breakingcontribution into Eq. (21) can be presented in the fol-lowing form �NScsb(as) == �(as)as �KMS1 as +KMS2 a2s +KMS3 (a3s) +O(a4s)�; (22)where the coe�cients KMS1 and KMS2 were �rst deter-mined in [6], while the analytical expression for KMS3was obtained only recently [1]. Note, that the possibil-ity that the factorisation of the renormalization group�-function in Eq. (22) is valid in all orders of pertur-bation theory was �rst studied in Ref. [25] in the mo-mentum space. These studies were made by double ap-plication of OPE approach to the axial vector{vector{vector triangle amplitude of Eq. (15) in the kinematiclimit jp2j � jq2j ! 1 [25]. The validity of this factor-izable feature of the generalization of Crewther relation�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



870 A.L.Kataevwas proved in all orders of perturbation theory in thecoordinate space [8] by means of double application ofthe OPE to this axial{vector{vector{vector amplitude ofEq. (14) in the limit x� y, x; y ! 0.Let us return to the problem of determination of thea4s-coe�cient in Eq. (3). Its obvious diagrammatic rep-resentation allowed to express it in the following form[15]:dSI4 = dabcdabc�CF dSI4;1 + CA dSI4;2 + TFNF dSI4;3�:(23)It is known, that when the proportional to CkF aks (withk � 1) contributions to CVA and CGLS are only consid-ered, the corresponding expression for Eq. (13) is validin all orders of perturbation theory [13, 26]. Indeed,when charge renormalization e�ects, and thus the con-formal symmetry breaking contribution �csb[as(Q2)] inthe r.h.s. of Eq. (20) and Eq. (21) are not taken into ac-count, the conformal symmetry is e�ectively restoredand the cancellation of these special contributions toAdler functions and DIS sum rules holds in all ordersof perturbation theory [13, 26]. In the case of Eq. (13),the cancellations of the similar contributions to the SI-parts of CVA and CGLS were already observed at thea3s-level [6]. In [15] the conformal-invariant limit andEq. (13) were non-obviously used to get the expressionfor dSI4;1 term from the SI order a3s and a4s contributionsto Eq. (9). Indeed, re-writing the variant of expressionof Eq. (13) asCVA (as)jc�i = 1=CGLS(as)jc�i; (24)one can get the prediction for dSI4;1 from Ref. [15], namelydSI4;1 = �32cSI3;1 � cSI4;1 = �1364 � 14�3 + 58�5; (25)where the factor �3=2 before cSI3;1 comes from the well-known term c1 = �(3=4)CF , which enters into the con-tribution 2c1cSI3;1 to the O(a4s)-coe�cient of 1=CGLS(as)-function in the r.h.s. of Eq. (24).Let us now consider the status of the statement of[14] that for the generalizations of Crewther relation ofEq. (21) and Eq. (20) following identity holdsCVA [as(Q2)]� CGLS[as(Q2)] == CNSA [as(Q2)]� CNSBjp[as(Q2)]=1 +�NScsb[as(Q2)]: (26)The second product in Eq. (26) was identi�ed in [14]with the product of the functions, which appeared af-ter application to this triangle amplitude of OPE in thelimit jq2j � jp2j ! 1. Note, that during more rigorous

coordinate-space studies, performed in [8], it was men-tioned, that the expression for �V;GLScsb in Eq. (20) shouldhave the same all-order structure as Eq. (22), but withun�xed from theory coe�cients KMSi . This statementwas obtained after application of the OPE-formalism tothe triangle Green function of Eq. (14), in the kinematicregime y � x, y; x! 0.In spite of the careful assumption of Ref. [15], thatthe analogy of the expression of Eq. (22) in Eq. (20) maycontain additional singlet-type contribution to KMS3 ,namelyK3 = KMS3 +KSI3 , we expected that the changesof limits in applications of OPE to the same Green func-tion will not lead to modi�cation of the concrete expres-sion of the MS-scheme coe�cients from Eq. (22) for thegeneralized Crewther relation of Eq. (20).Using this expectation and the results for cSI4;2 andcSI4;3 obtained in Ref. [15], we get the prediction for tworemaining still unknown contributions to dSI4 in Eq. (23).Taking into account the obtained in Ref. [15] predictionof Eq. (25), which is based on the concept of the con-formal symmetry, we get the following prediction for thea4s-coe�cient in the expression for the SI-part of Adlerfunction, namely:dSI4 = dabcdabc�CF�� 1364 � �34 + 5�58 �++ CA� 4811152 � 9711152�3 + 295576�5 � 1132�23�++ TFNF�� 1191152 + 67288�3 � 35144�5 + 18�23��: (27)It is necessary to stress once more, that our prediction isbased on the expectations that Crewther relations in theNS and vector quark channels may have the same struc-ture. Both follow from the same axial vector{vector{vector triangle Green function after change of limits ofapplications of OPE approach to the same amplitude,which depends from two conjugated sets of variables (ei-ther (x; y) or (p; q)).Therefore, the direct analytical evaluation of dSI4 -coe�cient is very important for getting better under-standing of the theoretical status of Crewther relation indi�erent channels and for the clari�cation of the funda-mental theoretical features of applications of both OPEand renormalization-group formalism for the triangleamplitudes with two variables.After the results were presented and discussed atACAT2011 Workshop (Brunel Univ., London, UK, 5{9September) and this work was submitted for publication,I became aware that the direct diagram-by-diagram cal-culations of dSI4 -term were completed and presented atRADCOR2011 Workshop [27]. The results of these cal-�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



The analytical singlet �4s QCD : : : 871culations con�rmed the predicted in Eq. (27) coe�cientsof the �23 -terms, which enter into dSI4;2- and dSI4;3-terms ofEq. (23). It should be stressed, that the analytical ex-pressions for these contributions result from from thesimilar expressions for cSI4;2 and cSI4;3, obtained in [15],and from the original Crewther relation, obtained fromEq. (20) in the conformal invariant limit after nulli�ca-tion of �V;GLScsb [as(Q2)]-term. This is the second exam-ple, when the proportional to �3 transcendental term en-ters into the respecting conformal symmetry parts oforder a4s contributions into the Adler DVA -function (the�rst similar �3 contribution was discovered by direct an-alytical calculations in [1]). This fact demonstrates oncemore, that on the contrary to previous belief (see e.g.Ref. [28]) the proportional to �3-terms can appear in re-specting conformal symmetry contributions to perturba-tive series in realistic gauge models like QED and QCDand is not the accident (for complementary discussionssee [29]). Note also, that the di�erence between otheranalytical contributions into the result of Ref. [27] andthe ones, which enter into Eq. (27), are nulli�ed afterapplication of the proposed in Ref. [2] test, based on theapplication of Banks{Zaks anzatz TFNF = (11=4)CA[30]. It comes from the special condition �0(NF ) = 0for the �rst coe�cient of the QCD �-function. Thus, theBaikov{Chetyrkin{Kuhn assumption, that the general-ized Crewther relation in the channel of vector currentsmay receive additional singlet contribution [15], whichin this order of perturbation theory is proportional tothe �rst coe�cient of the QCD �-function and has theform �0KSI3 a4s, is correct.I am grateful to P.A.Baikov, K.G.Chetyrkin, andV.A.Rubakov for useful discussions. The additionalcomments to this work were added after the invited sem-inar in Dep. of Physics of Univ. Santiago de Com-postela, Spain. I wish to thank J. Sanchez Guillen fordiscussions and G.Parente for invitation. This work issupported in part by the RFBR grants #11-01-00182and 11-02-00112 and the grant #NS-5525.2010.2.1. P.A. Baikov, K.G. Chetyrkin, and J.H. Kuhn, Phys.Rev. Lett. 104, 132004 (2010); arXiv:1001.3606 [hep-ph].2. A. L. Kataev and S.V. Mikhailov, arXiv:1011.5248 [hep-ph], to be published in Teor. Mat. Fiz. 170 (2012).3. M. Davier, S. Descotes-Genon, A. Hocker et al., Eur.Phys. J. C 56, 305 (2008); arXiv:0803.0979 [hep-ph].4. P.A. Baikov, K.G. Chetyrkin, and J.H. Kuhn, Phys.Rev. Lett. 101, 012002 (2008); arXiv:0801.1821 [hep-ph].5. V. L. Khandramai, R. S. Pasechnik, D.V. Shirkov et al.,arXiv:1106.6352 [hep-ph].
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