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The generalized Crewther relations in the channels of the non-singlet and vector quark currents are con-
sidered. These relations follow from the double application of the operator product expansion approach to
the same axial vector—vector—vector triangle amplitude in two regions, adjoining to the angle sides (z,y) (or
p?,q%). We assume that the generalized Crewther relations in these two kinematic regimes result in the ex-
istence of the same perturbation expression for two products of the coefficient functions of annihilation and
deep-inelastic scattering processes in the non-singlet and vector channels. This feature explains the conformal
symmetry motivated cancellations between the singlet a® corrections to the Gross—Llewellyn Smith sum rule
Sars of v N deep inelastic scattering and the singlet ai’ correction to the eTe -annihilation Adler function DX
in the product of the corresponding perturbative series. Taking into account the Baikov—Chetyrkin—-Kuhn 4-th
order result for Sqrs and the perturbative effects of the violation of the conformal symmetry in the generalized
Crewther relation, we obtain the analytical contribution to the singlet i correction to the DY-function. Its
a-posteriori comparison with the recent result of direct diagram-by-diagram evaluation of the singlet 4-th order
corrections to DY - function demonstrates the coincidence of the predicted and obtained ¢2-contributions to the
singlet term. They can be obtained in the conformal invariant limit from the original Crewther relation. There-
fore, on the contrary to previous belief, the appearance of (3-terms in the perurbative series in quantum field
theory gauge models does not contradict to the property of the the conformal symmetry and can be considered
as regular feature. The Banks—Zaks motivated relation between our predicted and the obtained directly 4-th
order corrections is mentioned. It confirms the expectation, previously made by Baikov—Chetykin—Kuhn, that
at the 5-loop level the generalized Crewther relation in the channel of vector currents may receive additional
singlet contribution, which in this order of perturbation theory is proportional to the first coefficient of the
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QCD [-function.

Quite recently the 4-th order perturbative coeffi-
cients to the flavour non-singlet (NS) part of the ete~-
annihilation Adler D-function DY® and to the NS
Bjorken sum rule Sgj, of the deep-inelastic scattering
(DIS) process of polarised leptons on nucleons were eval-
uated symbolically within general SU(N,) colour gauge
group [1]. The explicit analytical expression for the 4-
th perturbative coefficient of Spj, in the MS-scheme
was obtained in [2] by inverting the order a? analytical
results for 1/Sp;p, presented in [1]. Apart of the phe-
nomenological applications to the analysis of the experi-
mental data for the semi-hadronic width of 7-lepton [3]?)
and of the experimental data for the Bjorken polarised
sum rule [5], the M S-scheme results of [1] have also im-
portant theoretical consequences. As was emphasised
in [1, 2], the analytical SU(N,.)-group expressions of [1]
play essential role in the verification of the discovered in
[6] B-function factorisable representations for the confor-
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2)Note, that in this analysis the SU(3) variant [4] of the SU(N.)
expression for DY5 [1] was used.
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mal symmetry breaking term in the QCD-generalization
of the original quark-parton model Crewther relation [7].
The validity of this discovery of [6] was proved in the
M S-scheme in all orders of perturbation theory [8] (for
some additional discussions see the review of [9]).

It is worth to stress, that to apply self-consistently
the 4-th order perturbative results of [1] in the analy-
sis of the e"e™ — hadrons data above thresholds of
charm quarks production and in the fits of the precise
LEP-data for Z° — hadrons decay width as well, it is
necessary to find still unknown 4-th order singlet (SI)
contribution to the Adler functions D4 of vector quark
currents. In the previous a? order of perturbation theory
these types of corrections were analytically evaluated in
[10] and confirmed later in [11] and [12].

In this work the symbolical expressions for the 4-
th order SI contributions to D 4-function are predicted.
Three important theoretical inputs will be used:

e the universality of the original Crewther relation
[7], which is valid in the conformal invariant limit
not only for the product of the coefficient functions
of Dg S_function and NS DIS Bjorken sum rule,
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but for the product of the coefficient functions DY
of the Adler D-function of vector currents and of
the coefficient function of the Gross—Llewellyn DIS
sum rule for neutrino-nucleon DIS as well [13];

e the statement of [14] that the product of the nor-
malised perturbative coeflicient functions of the
vector currents D-function and of the Gross—
Llewellyn sum rule is identical to the M S-scheme
QCD expression of the generalized Crewther rela-
tion in the NS-case;

e the obtained in the case of the general SU(N,)-
group analytical expressions for the O(a?) flavour
SI perturbative contributions to the Gross—
Llewellyn Smith sum rule in the M S-scheme [15]
and the previous O(a?) order scheme-independent
SI correction to this sum rule which was analyti-
cally evaluated in [16].

Consider now physical quantities to be analysed in
this work. Perturbative expression for the ete~ Adler
D-function in the vector channel has the following form

4 _2 [T ReTe (s) s — DNS(q SI(q
DA(a’S)_Q A (8+Q2)2d _DA(3)+DA(3)’
(1)

where the functions in the r.h.s. of Eq. (1) are defined
as

DYS(a,) = dR(EFj Q})c¥%(a),
- (XF;QF)ZC,%‘(%)

Here, Q r are the electric charges of quarks and dg is the
dimension of SU(N,)-group representation (for detailed
definitions and studies see e.g. Ref. [17]). It enters in the
normalisation factor of the NS contribution to the Adler
vector function and do not enter in the normalisation
factor of the SI-part of Eq. (1).

Within the fundamental representation of SU(NN,)-
group one has dg = N.. The coefficient functions C}®
and C%! have the following perturbation expansions

CY¥%(as) =1+ ZdNS ay, 5 (as) = Zd,slla;’.

n>1 n>3

(2)

Within perturbation theory the polarised Bjorken DIS
sum rule is defined as

S (a,) = / o, @) e = 035, (0, (4)

where the coefficient function can be expressed as

ONS,(a) =1+ 3 cNSal. (5)

m>1

The known coefficients d;—d4 and ¢;—c4 contain the pow-
ers of SU(N,.) colour group structures Cr, Ca, Tr Np
and d2%°? [1], where Cr and C4 are the Casimir opera-
tors, N is the number of flavours, T is the normalisa-
tion factor of the trace of product of two SU(N,) gener-
ators and d2°? are the structure constants of SU(N¢)-
group.

The Gross—Llewellyn Smith sum rule of vN DIS can
be defined as

1 ! vp+v.
SGLS(aS) = 5/\ F3 P+ P(z, Qz)dz =
0

1
= 3CGLs(a3) + 0 (Q2> (6)
where its pure perturbative coefficient function can be
decomposed to the NS- and SI-parts as

= Cgis(as) + C8ps(as). (7)

Note, that for the NS-part the following identity holds:
Ciis(as) = C5jplas) (8)

The validity of Eq. (8) was first proved within dimen-
sional regularization in [18] by demonstration that the
Lh.s and r.h.s. of Eq. (8) coincide after proper definition
of axial Ward identities in QCD. The necessity of per-
forming extra finite renormalizations in the axial-vector
channel were understood in the process of studies of 2-
loop corrections to dimensionally regularized [19] Adler
D-functions for the case of axial-vector and vector quark
currents in the independent, but simultaneous works of
Refs. [20, 21].

As was demonstrated in Ref. [16], at the 3-rd order of
perturbation theory the coefficient function of the Gross—
Llewellyn Smith sum rule of Eq. (7) starts to differ from
Cs ]p(as) due to the appearance of the additional SI con-
tributions. They enter into the expression of the follow-
ing coeflicient function:

Caus(as)

GLS (as)

Z CSI n (9)

n>3

Its first scheme-independent term has the following ana-

lytical form [16]
dabcdachF 11 1
e T dn (‘1—92 ! §C3>-
(10)

CSI dabcdachF oI
3 =
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Notice,
dabcdabc .

the appearance of SU(N,.)-group structure

Next coefficient was analytically evaluated in
the M S scheme in [15]. It has the following representa-
tion:

dabe gabe v
it = T (Cp i+ O e+ TeNE L),
R
(11)

where all coefficients were analytically evaluated in [15].

Consider now the concrete consequences of the con-
formal symmetry and of the effects of its violation in the
theory of strong interactions. The validity of the confor-
mal invariance in the quark-parton model leads to the
existence of the Crewther relation [7]. In the renormal-
izable gauge quantum field models (say QED or QCD)
this relation can be written down as

O (as) x CB3p(as)le—i = L. (12)

Here, due to the property of the the conformal invari-
ance, a, does not depend on transferred momentum Q2.

Note that the similar Crewther relation is also valid
for the product of the DY and the Gross-Llewellyn
Smith sum rule coefficient functions:

CX (as) x Cars(as)]e—s = 1. (13)

It is based on exact z-space derivation of [13] (compare
Eq. (2.92) with Eq. (2.9b) in [13]).

Originally Crewther relation in the NS and vector
channels was obtained in [7] and analysed in more de-
tails in the work of [13] by means of double application
of the operator product expansion (OPE) approach for
the vector—vector—axial-vector 3-point function

Tiai(w,0,y) = OIT[V; (2)V3 (0)45(»)][0),  (14)
WheEe | ¥(z)y,(A\2/2)¢(z) and A5 =
= ¢P(x)ys73(A°/2)¢(z). In the momentum space

the amplitude of Eq. (14) can be written down as

Tias(p,9) =

m

=i / (OITV2 (2) V2 (0) A2 ()] 0)eP+ 0V dzdy =
= dabcTuaﬂ (p7 q) (15)

Thanks to the studies of Ref. [22] it was understood that
in the conformal-invariant limit this 3-index tensor is
proportional to the fermion triangle one-loop graph, con-
structed from massless fermions, namely

Tiai(w,0,y) = d**NATP(2,0,y).  (16)

Here N is a number, which is proportional to anomalous
constant, related to 7° — vy decay [23, 24]. Fixing
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N =1 and keeping in mind this physical relation to the
amplitude of 7 — vy decay, we define the coefficient
function of the Adler D-function in the vector channel
by taking the limit of equal charges of all quarks flavours
and re-writing Eq. (1) as

DY (ax) = dR(Z Q%) ), (1)
F

where

_ NS SI n
=0y (as) + E Z dn Qg . (18)

The coefficient d5' is known from the analytical calcula-
tions of [10-12] and reads

11 1
dgl _ dabcdabcdgfl _ dabcdabc <1_92 _ §C3> . (19)

Consider now the generalizations of Crewther rela-
tion in the channels of vector and NS quark currents.
They can be defined as

)] — 1+AVGLS[ S(Q2)]

CH[as(Q%)] x Carslas(Q csb
(20)

and

Ci°las(Q%)] x Chj,las(Q)] = 1+ Af3[as(Q%)] (21)
The expression for the conformal symmetry breaking
contribution into Eq.(21) can be presented in the fol-
lowing form

ANS( )_

csb
= Blas) waisas +K§/[S 2

as

+ K3"5(a3) + 0(a}) |, (22)

and K{VI_S
mined in [6], while the analytical expression for K9
was obtained only recently [1]. Note, that the possibil-
ity that the factorisation of the renormalization group
B-function in Eq. (22) is valid in all orders of pertur-
bation theory was first studied in Ref. [25] in the mo-
mentum space. These studies were made by double ap-
plication of OPE approach to the axial vector—vector—
vector triangle amplitude of Eq.(15) in the kinematic
limit [p?| > |¢?| — oo [25]. The validity of this factor-
izable feature of the generalization of Crewther relation

where the coefficients K{VI_S were first deter-



870 A. L. Kataev

was proved in all orders of perturbation theory in the
coordinate space [8] by means of double application of
the OPE to this axial-vector—vector—vector amplitude of
Eq. (14) in the limit z < y, z,y — 0.

Let us return to the problem of determination of the
a?-coefficient in Eq. (3). Its obvious diagrammatic rep-
resentation allowed to express it in the following form
[15]:

dy' = debedebe (CF dy', +Ca dfy + TrNp d§}3>.
(23)

It is known, that when the proportional to Cka* (with
k > 1) contributions to CX and CgLs are only consid-
ered, the corresponding expression for Eq. (13) is valid
in all orders of perturbation theory [13, 26]. Indeed,
when charge renormalization effects, and thus the con-
formal symmetry breaking contribution A g[as(Q?)] in
the r.h.s. of Eq. (20) and Eq. (21) are not taken into ac-
count, the conformal symmetry is effectively restored
and the cancellation of these special contributions to
Adler functions and DIS sum rules holds in all orders
of perturbation theory [13, 26]. In the case of Eq. (13),
the cancellations of the similar contributions to the SI-
parts of CX and Cgrs were already observed at the
a3-level [6]. In [15] the conformal-invariant limit and
Eq. (13) were non-obviously used to get the expression
for dill term from the SI order a3 and a? contributions
to Eq. (9). Indeed, re-writing the variant of expression
of Eq. (13) as

Cli (as)le—i = 1/Cars(as)le—i, (24)
one can get the prediction for d3; from Ref. [15], namely

dSI 3 SI SI 13

417 T5%1 TG T Ter T i(s + gfs, (25)
where the factor —3/2 before cgfl comes from the well-
known term ¢; = —(3/4)Cr, which enters into the con-
tribution 2¢;c5"; to the O(a})-coefficient of 1/Cavs(as)-
function in the r.h.s. of Eq. (24).

Let us now consider the status of the statement of
[14] that for the generalizations of Crewther relation of
Eq. (21) and Eq. (20) following identity holds

C{las(Q%)] x Cavs[as(Q?)] =
= C3%[0s(Q%)] x CF5,[as(@)]=1 + AT [a:(Q%)]. (26)
The second product in Eq.(26) was identified in [14]
with the product of the functions, which appeared af-
ter application to this triangle amplitude of OPE in the
limit |g%| > |p?| — oo. Note, that during more rigorous

coordinate-space studies, performed in [8], it was men-
tioned, that the expression for AXS’ELS in Eq. (20) should
have the same all-order structure as Eq. (22), but with
unfixed from theory coefficients K. This statement
was obtained after application of the OPE-formalism to
the triangle Green function of Eq. (14), in the kinematic
regime y < z, y,z — 0.

In spite of the careful assumption of Ref. [15], that
the analogy of the expression of Eq. (22) in Eq. (20) may
contain additional singlet-type contribution to K. 31.”_5 ,
namely K3 = KM + K31, we expected that the changes
of limits in applications of OPE to the same Green func-
tion will not lead to modification of the concrete expres-
sion of the M S-scheme coefficients from Eq. (22) for the
generalized Crewther relation of Eq. (20).

Using this expectation and the results for c3", and
c3% obtained in Ref. [15], we get the prediction for two
remaining still unknown contributions to d3' in Eq. (23).
Taking into account the obtained in Ref. [15] prediction
of Eq. (25), which is based on the concept of the con-
formal symmetry, we get the following prediction for the
a?-coefficient in the expression for the SI-part of Adler
function, namely:

dzl :dabcdabc[CF<_E _94_%) +

64 4 8
481 971 295 11 ,
+CA<T52—T5243+%45‘§ > *
119 67 35 1,
+TFNF<_ 1152 " 288% " 144% T 5 3)] 27)

It is necessary to stress once more, that our prediction is
based on the expectations that Crewther relations in the
NS and vector quark channels may have the same struc-
ture. Both follow from the same axial vector—vector—
vector triangle Green function after change of limits of
applications of OPE approach to the same amplitude,
which depends from two conjugated sets of variables (ei-
ther (z,y) or (p,q))-

Therefore, the direct analytical evaluation of dj'-
coefficient is very important for getting better under-
standing of the theoretical status of Crewther relation in
different channels and for the clarification of the funda-
mental theoretical features of applications of both OPE
and renormalization-group formalism for the triangle
amplitudes with two variables.

After the results were presented and discussed at
ACAT2011 Workshop (Brunel Univ., London, UK, 5-9
September) and this work was submitted for publication,
I became aware that the direct diagram-by-diagram cal-
culations of d$!-term were completed and presented at
RADCOR2011 Workshop [27]. The results of these cal-
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culations confirmed the predicted in Eq. (27) coefficients
of the (3-terms, which enter into d3’,- and d3’-terms of
Eq.(23). It should be stressed, that the analytical ex-
pressions for these contributions result from from the
similar expressions for ¢f, and cj', obtained in [15],
and from the original Crewther relation, obtained from
Eq. (20) in the conformal invariant limit after nullifica-
tion of AY>¥5[a,(Q?)]-term. This is the second exam-
ple, when the proportional to (3 transcendental term en-
ters into the respecting conformal symmetry parts of
order a? contributions into the Adler DY -function (the
first similar (3 contribution was discovered by direct an-
alytical calculations in [1]). This fact demonstrates once
more, that on the contrary to previous belief (see e.g.
Ref. [28]) the proportional to (3-terms can appear in re-
specting conformal symmetry contributions to perturba-
tive series in realistic gauge models like QED and QCD
and is not the accident (for complementary discussions
see [29]). Note also, that the difference between other
analytical contributions into the result of Ref.[27] and
the ones, which enter into Eq.(27), are nullified after
application of the proposed in Ref. [2] test, based on the
application of Banks-Zaks anzatz TpNp = (11/4)Cy
[30]. It comes from the special condition GBo(Np) = 0
for the first coefficient of the QCD S-function. Thus, the
Baikov—Chetyrkin—-Kuhn assumption, that the general-
ized Crewther relation in the channel of vector currents
may receive additional singlet contribution [15], which
in this order of perturbation theory is proportional to
the first coefficient of the QCD [-function and has the
form By K$'a?, is correct.
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