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 2011 December 10Geodesic deviation and particle creation in curved spacetimesA.Mironov�+1), A.Morozov+1), T.N. Tomaras�+1)�Lebedev Physics Institute RAS, 119991 Moscow, Russia+Institute for Theoretical and Experimental Physics RAS, 117218 Moscow, Russia�Department of Physics, University of Crete, GP-71003 Heraklion, GreeceSubmitted 3 November 2011A quantum mechanical picture, relating accelerated geodesic deviation to creation of massive particles viaquantum tunneling in curved background spacetimes, is presented. The e�ect is analogous to pair productionby an electric �eld and leads naturally to production of massive particles in de Sitter and superluminal FRWspacetimes. The probability of particle production in de Sitter space per unit volume and time is computed ina leading semiclassical approximation and shown to coincide with the previously obtained expression.1.When embedded into an external background, the\vacuum" of quantum �eld theory can lose stability be-cause of particle creation. The di�erence from classicalor quantum radiation is that the particles are producedthrough quantum tunneling.The standard paradigm is the \Klein paradox" [1],i.e. creation of electron-positron pairs by an electric�eld E. Let us for simplicity consider a constant elec-tric �eld along the z-axis in a capacitor of width L. Theprobability to create a single particle-antiparticle pair(the Schwinger process [2]) in its center of mass frameis given by the tunneling exponential ��exp[i R p(z) dz]��2,where the momentum p(z) is the imaginary solution ofthe dispersion relation2)hE+ � eA0(z)i2 = 4p2 + 4m2; (1)with the total energy of the pair E+ = �2m. In theabove equation z � z1 � z2 is the distance of two parti-cles, p � (p1 � p2)=2 is its conjugate momentum, whileA0(z) = R z Edz.The characteristic parameter is the \creation length"l, de�ned by the condition that the energy o�ered by theelectric �eld compensates for the rest energy on the par-ticles produced, i.e. eA0(l) = e R l0 Edz = 2m, which1)e-mail: mironov@itep.ru; mironov@lpi.ru; morozov@itep.ru;tomaras@physics.uoc.gr2)The energies E1; E2 and momenta p1; p2 along the z-axis of theparticles in the pair are related by�12 (E+ � eEz�)� 12 (E� � eEz+)�2 = �12 (p+ � p�)�2 +m2;with z� = z1 � z2, E� = E1 � E2, p� = p1 � p2. Adding thesetwo equations one obtains(E+ � eEz�)2 + (E� � eEz+)2 = p2+ + p2� + 4m2;which in the center of mass frame p+ = 0, z+ = 0, and E� = 0,reduces to (1).

gives l = 2m=eE for a constant �eld E. The pair cre-ation occurs only if L > l and the probability of creationper unit volume and unit time interval is the well knownexponential [2]�(L� l) exp � Z l0 p4m2 � e2E2z2 dz! == �(L� l)e��m2=eE : (2)This integral runs over the distance z between the par-ticles in the pair and describes the tunneling from thepoint z = 0 at the \moment" of creation to z = l. Notethat the applicability of the quasiclassical approximationrequires the exponent in (2) to be large and negative, sothat the exponential is small.2. The situation becomes considerablymore interest-ing when the electric �eld is replaced by a gravitationalone [3]. For instance, contrary to the case of a constantelectric �eld, which can pull apart the two virtual par-ticles of the pair, the equivalence principle forbids paircreation in a constant gravitational �eld.However, it is natural to expect that an analogous\pulling-apart force" will occur also in gravity, in thepresence of curvature, as long as the latter has the rightproperties, which make close geodesics diverge.The equation of geodesic deviation in a given back-ground specetime is [4]D2��� = R����u�u��� ; (3)where R���� is the Riemann curvature tensor, u� == @x�=@� is the four velocity along the \central geo-desic" of the one-parameter congruence x�(�; �), para-metrized by �, and �� = @x�=@�, is essentially the coor-dinate distance between two close probe particles mov-ing along the corresponding geodesics. D� denotes the872 �¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



Geodesic deviation and particle creation in curved spacetimes 873covariant di�erentiation with respect to the a�ne para-meter � along the central trajectory.Consider the case of a maximally symmetric back-ground spacetime with constant curvature scalar R. DeSitter and AdS are two obvious examples of interest.The Riemann tensor of such a space is of the formR���� = � R12 (g��g�� � g��g��) : (4)Inserting (4) into (3), one obtainsD2�� � = � R12 [� � � (u�)u�] : (5)In the study of the particle creation process, in particu-lar, one can choose �� such that (u�) = 0. That is, inthe rest frame of one of the particles with u = (1; 0; 0; 0),one observes the motion of the second one at a properspace-like distance from the �rst, i.e. with �0 = 0. Then,equation (5) simpli�es toD2�� i = � R12� i; (6)where Latin indices denote the spatial coordinates.In Eqs.(3){(6) �� cannot be chosen arbitrarily: itis a tangent vector to a family of geodesics and is re-lated by the zero-curvature condition to u�. Physicallysigni�cant is, however, not ��, but its length z = jj�jj,which measures the distance between the geodesics. Inany spatially isotropic spacetime one may choose �i tohave only one non-zero component. In this case, using(6) one obtains for the equation of motion of z3):@2z@�2 = � R12z: (7)3)Indeed,D2� z2 = 2g����D2��� + 2g��D���D��� == �R6 g������ + 2g��D���D��� = �R6 z2 + 2g��D���D��� :On the other hand,D2� z2 = 2z @2z@�2 + 2�@z@� �2 :Therefore, @2z@�2 = � R12 z +X;where X = � 12z3 (��D�����D��� � z2g��D���D���):For any spacelike vector �� with only one non-zero componentX = 0.A simple example to illustrate these points is S2. For merid-ians � = const on a two-dimensional sphere with the metricd�2 + sin2 �d�2 the role of a�ne parameter � is played by �,and the two tangent vectors are u = (1; 0) and � = (0; 1), whilez = jj�jj = sin � and D2�� = �� while @2�z = �z.

This equation, in turn, can be converted into thedispersion relation E = p22 + R24z2; (8)where p is the momentum conjugate to z. It is amusingto notice, that this equation describes a non-relativisticinverted harmonic oscillator and the tunneling probabil-ity is again given by the integral between the turningpoints and is proportional to (after putting E = �2m)exp �2 Z l0 jp(z)jdz! == �(�R) exp �2 Z l0 r4m+ R12z2 dz! == �(�R) exp � 2�mp�R=12! : (9)Again, the applicability of the quasiclassical approxima-tion used here, requires that the exponent in this formulais large, i.e. m2 � �R=12 � H2.This formula implies that particles are producedin de Sitter space when the Ricci scalar is negative,R = �12H2 < 0 (H is the Hubble constant) withprobability per unit volume and time interval given byexp (�2�m=H) [5], while they are not produced in AdSspace, where the Ricci scalar has the opposite sign andthe relevant geodesics decelerate rather than acceler-ate4). In the case of massless gravitons in de Sitter,the role of m2 is played by k2=a2(t), for a given modewith comoving momentum k. The production of modeswith k2=a2(t) . H2 is expected not to be exponentiallysuppressed [6].3. Similarly, one can deal with more complicatednon-maximally symmetric spacetimes. In order to de-termine if particles are produced in these cases, it is notsu�cient to look at the sign of the curvature scalar; in-stead, one has to proceed with a more re�ned analysis ofthe geodesic deviation equation. For instance, considerthe Friedmann{Robertson{Walker (FRW) metricds2 = 
2(x0) �(dx0)2 � (dx)2� = dt2 � a2(t)(dx)2(10)4)The emergence of the oscillator potential (8) in the problemrelated to de Sitter space should not come as a surprise: in thestatic coordinate system the de Sitter metric has the formds2 = (1 �H2r2)dt2 � 11�H2r2 dr2 � r2d
22;which in the Newtonian approximation corresponds to the invertedoscillator potential V = �H2r2=2.�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



874 A.Mironov, A.Morozov, T.N. Tomarasand assume for simplicity that the 3-dimensional spaceis 
at. Then, the curvature scalar is equal toR = �6
00
3 ; (11)where the prime denotes di�erentiation with respect tox0, and the geodesic deviation equation readsD2�� i =  
00
 � 2
02
2 !�(u0)2� i � (u0�0)u i�++ 
02
4 �� i � (�u)u i� : (12)In the case of de Sitter, 
(x0) = 1=(Hx0) = exp(Ht).Thus, the �rst term in this equation vanishes and onereturns to formula (5). In the generic FRW-case, on theother hand, in the comoving coordinates of the centralgeodesic, i.e. for u� = (1; 0; 0; 0), equation (12) takesthe form D2� i =  
00
3 � 
02
4 ! � i = �aa� i; (13)where the dots denote di�erentiation with respect to t.Again, this equation can be rewritten as an equation forthe distance z between two neighboring geodesics, withthe covariant derivatives replaced by the ordinary oneswith respect to t, namely@2z@t2 = �aaz: (14)This equation also describes an oscillator but with time-dependent frequency, and, depending on the explicitform of a(t), there can be relatively accelerating geo-desics, in which case particle creation will take place.The lesson is that the particle production is deter-mined in general not simply by the sign of the curvaturescalar, but by the sign of �a (given that a > 0). Pairsare produced only if �a > 0. Note that a solution of (14)is just z(t) = a(t). For a power-law behavior of thescaling factor a(t) � ts, the condition �a > 0 becomess(s � 1) > 0. This inequality is satis�ed for s > 1 ors < 0. The latter behaviour, however, describes a con-tracting universe in which, of course, there is no chanceof particle creation. On the contrary, in the case of s > 1describing a superluminal accelerated expansion, pairproduction takes place. In order to calculate the pro-duction rate in these FRW-metrics, one has to deal withan oscillator with varying frequency and, correspond-ingly, a time dependent barrier. This requires detailedanalysis and the answer will depend on the explicit formof a(t) [7].

4. A few simple thoughts related to the fate of de Sit-ter evolution as a result of particle production are in or-der. Since emerging particles gravitate, they act againstthe \anti-gravity" of de Sitter space, which \repels" par-ticles. It is an old hypothesis [8], that maybe the backreaction of created particles could drastically a�ect thefate of the de Sitter evolution, perhaps even stopping itsaccelerated expansion. For this to happen, however, thedensity of created particles should be big enough andmaybe \explosive". This is not easy to achieve due tothe dilution of the produced particles by the space ex-pansion.The particle density n = N=V in the absence of self-interactions is governed by the well-known equation_n = �� n _VV ; (15)where the �rst term on the r.h.s. describes the creationof particles, � � exp (�2�m=H), while the second termdescribes their dilution. In the exponentially expand-ing 
at de Sitter one obtains V � exp(3Ht), so that_V =V = 3H = const and (15) implies thatn = �3H + �e�3Ht; (16)which does not grow with time and the �rst term is ex-ponentially small so that the creation of particles cannotstop the accelerated expansion.This well-known result is due to the exponential ex-pansion of de Sitter space. One way one might expectto change the situation is by introducing self-interactionamong the produced particles (see [9, 10] for further dis-cussion). The self-interaction can stimulate productionof particles with a chain reaction, represented in (15) byan extra term of the form 
n with 
 > 0 on the righthand side. Hence, if 
 > 3H , this term dominates overdilution and particle production can eventually cancelthe de Sitter exponential expansion, as a result of theexponential increase of the matter density5):n = �3H � 
 + �e(
�3H)t: (18)No quantum correlations, fusion of created particles, orthe e�ect of Bose statistics was taken into account above.5)If the spatial section of the space-time is closed, i.e. V �cosh3(Ht), one obtains insteadn = �8 cosh3(Ht) � e3Ht3H � 
 � e�3Ht3H + 
 + eHtH � 
 � e�HtH + 
 �++ � e
tcosh3(Ht) ; (17)which does not change the conclusion.�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



Geodesic deviation and particle creation in curved spacetimes 875The latter, in particular may lead to higher powers of non the r.h.s. of the density evolution equation and hasbeen discussed in [9].5. Any account of self-interaction which leads tofast increase of particle density implies that the Ein-stein equations should be modi�ed. In particular, thismeans that the acceleration of the Universe expansioncan change to deceleration. Indeed,�aa � �(3p+ �); (19)where � is the energy density and p is the pressure. Sincein the de Sitter space � = H2 = �p, the acceleration ispositive. However, if enough particles are produced withpositive both � and p (the relation between � and p de-pends on the model), one can change the sign of the r.h.s.of (19).However, the curvatureR � �(�� 3p) = �T �� (20)only increases 6) in its absolute value when any realparticles are created, with �� 3p � 0. Thus, while cre-ation of particles can indeed act against and, perhaps,even stop the accelerated expansion, looking at the cur-vature and assuming that it is the negative curvaturewhich controls particle production one could, at �rstsight, think that there is violation of the Le Chatelierprinciple, namely, that negative curvature creates parti-cles, and at the same time it becomes more negative as aresult of this. However, as we saw in Section 3, it is theacceleration �a and not the curvature that controls theparticle production. Since, according to (19) the accel-eration decreases as a result of particle creation, thereis no contradiction with the Le Chatelier principle.6. An elementary quantum mechanical (as opposedto quantum �eld theoretic) discussion of particle produc-tion in gravitational backgrounds was presented, appeal-ing as much as possible to physical intuition and care-fully avoiding the formal and usually technically veryinvolved argumentation. It relates the phenomenon ofpair production to the accelerated deviation of nearbygeodesics in the given spacetime background. In sim-ple cases of maximally symmetric backgrounds, it leadsto the known exponential barrier penetration formulafor the probability of such particle production. The ap-proach is general, valid in locally curved spacetimes ofany dimensionality. Our arguments are not expected tobe new to the experts, but surprisingly, they seem not6)In [11], the authors obtained a decrease of the cosmologicalconstant as a result of negative corrections to � due to the inter-action between gravitons.
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