
Pis'ma v ZhETF, vol. 94, iss. 12, pp. 921 { 925 c 2011 December 25Hamiltonian form and solitary waves of the spatial Dysthe equationsF. Fedele+1), D. Dutykh�+School of Civil and Environmental Engineering and School of Electrical and Computer Engineering, Georgia Institute of Technology,Ga 30332-0355 Atlanta, USA�LAMA, UMR 5127 CNRS, Universit�e de Savoie, Campus Scienti�que, 73376 Le Bourget-du-Lac Cedex, FranceSubmitted 17 October 2011The spatial Dysthe equations describe the envelope evolution of the free-surface and potential of gravitywaves in deep waters. Their Hamiltonian structure and new invariants are unveiled by means of a gauge trans-formation to a new canonical form of the evolution equations. An accurate Fourier-type spectral scheme isused to solve for the wave dynamics and validate the new conservation laws, which are satis�ed up to machineprecision. Moreover, traveling waves are numerically constructed using the Petviashvili method. It is shownthat their collision appears inelastic, suggesting the non-integrability of the Dysthe equations.1. Introduction. Mathematical models used inphysics and mechanics do not always possess a canon-ical Hamiltonian structure. Typically, the dynamics isgoverned by partial di�erential equations expressed interms of physically-based variables, which are not usu-ally canonical. A transformation to new variables isneeded in order to unveil the desired structure explicitly.This is the case for the equations of motion for an idealuid: in the Eulerian description, they cannot be re-cast in a canonical form, whereas in a Lagrangian framethe Hamiltonian structure is revealed by Clebsch po-tentials. Moreover, multiple-scale perturbations of dif-ferential equations expressed in terms of non-canonicalvariables typically lead to approximate equations that donot maintain the fundamental conserved quantities, asthe hydrostatic primitive equations on the sphere, whereenergy and angular momentum conservation are lost un-der the hydrostatic approximation. Clearly, if canonicalvariables can be identi�ed, then the associated Hamil-tonian structure provides a natural framework for mak-ing consistent approximations that preserve the funda-mental dynamical properties of the original system, no-tably its conservation laws. For example, consider theequations that describe the irrotational ow of an idealincompressible uid of in�nite depth with a free sur-face. Their Hamiltonian description was discovered by[1] in terms of the free-surface elevation �(x; t) and thevelocity potential '(x; t) = �(x; z = �(x; t); t) evaluatedat the free surface of the uid. Variables �(x; t) and'(x; t) are conjugated canonical variables with respectto the Hamiltonian H given by the total wave energy.By means of a third order expansion of H in the wavesteepness, [2] derived an integro-di�erential equation in1)e-mail: fedele@gatech.edu

terms of canonical conjugate Fourier amplitudes, whichhas no restrictions on the spectral bandwidth.The modi�ed Nonlinear Schr�odinger (NLS) equa-tions derived by [3] are also non-Hamiltonian. Using themethod of multiple scales, he extended the deep-watercubic NLS-equation for the time evolution of narrowbandwave envelopeB of the carrier wave exp(ik0x�i!0t) andthat of the potential � of the wave-induced mean ow,to fourth order in steepness and bandwidth. Introducingdimensionless units, t0 = !0t, x0 = k0x, B0 = k0B, anddropping the primes, � can be easily found by means ofthe Fourier-transform and a single equation for B canbe derived as well:Bt+12Bx+18 iBxx � 116Bxxx + i2 jBj2B + 32 jBjBx ++ �B2B�x + 12 iBH(jBj2)x = 0; (1)where � = 1=4, the subscripts Bt = @tB and Bx = @xBdenote partial derivatives with respect to x and t, re-spectively, H(f) is the Hilbert Transform of a functionf(x), and B� denotes complex conjugation (see also [4]).The form of the equation for the envelope A of the wavepotential is similar to (1), but the term �B2B�x becomes��A2A�x [5]. Recently, the associated canonical form(which does not contain the � term) has been derivedby [6] starting from the Hamiltonian Zakharov equationwith the Krasitskii kernel [7]. We also point out that[8], starting from a conformal-mapping formulation ofthe Euler equations derived another version of the tem-poral Dysthe equation, which is similar to (1) but alsonon-Hamiltonian.On the other hand, to model wave propagation inwave basins a change to a coordinate system moving at�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011 921



922 F. Fedele, D. Dutykhthe group velocity can be used by introducing the di-mensionless variablesB = "u; � = "(2x� t); � = "2x;with " = k0a being the wave steepness of the carrier waveand a the associated amplitude [9]. As such, the tem-poral Dysthe equation (1) transforms, up to the fourthorder in ", tou� + iu�� + i juj2 u+ 8" juj2 u� + 2"u2u�� ++ 2"iuH(juj2)� = 0; (2)hereafter referred to as the spatial Dysthe for the waveenvelope u. On the other hand, the associated envelopeA = "v of the wave potential satis�esv� + iv�� + ijvj2v + 8"jvj2v� + 2"ivH(jvj2)� = 0: (3)Both (2) and (3) can also be derived directly from theZakharov equation [10].In this paper, we will unveil the hidden canonicalstructure of the spatial Dysthe equations (2), (3). In par-ticular, we introduce a gauge transformation that yieldsa canonical form of equation (2) for the wave envelopeu, and new invariants for it. As a corollary, we will alsoshow that equation (3) for the wave potential envelope vis already Hamiltonian. Then, the Petviashvili methodis exploited to compute numerically ground states andtraveling waves ([11]; see also [12, 13]). Their dynamicsis numerically investigated up to machine precision bymeans of a highly accurate pseudo spectral scheme inorder to provide new insights on the integrability of theDysthe equations.2. Canonical form. Hereafter, we will consider thegeneric nonlinear equationu� = �iau�� � ih juj2 u� c" juj2 u� �� "eu2u�� � fi"uH(juj2)� ; (4)with (a; h; c; e; f) as a quintuplet of arbitrary real coef-�cients. In particular, the spatial Dysthe for the waveand potential envelopes follow from (4) with parameters(1; 1; 8; 2; 2) and (1; 1; 8; 0; 2) respectively. The wave ac-tion A = Z juj2 d� (5)is conserved by (4), but up to date no other conservationlaws are known for u.Drawing from [14] (see also [15]), the invariance ofA suggests the following variable change via the gaugetransformation w = G(u) = u exp(ik ); (6)

where k is a free parameter, and the \stream function" is de�ned as @� =  � = juj2. Note that juj2 = jwj2and the wave action A is preserved in the transforma-tion. The spatial evolution equation for w follows from(6) as w� = �iaw�� � ihjwj2w ++ ik"2 c� 3e� 2ak2 jwj4w � (c+ 2ak)"jwjw� �� (e+ 2ak)"w2w�� � if"wH(jwj2)� : (7)If the free parameter k� is chosen as k� = � e2a", equa-tion (7) simpli�es tow� = �iaw�� � ih jwj2 w � i ce� 2e24a "2jwj4w �� (c� e)" jwj2 w� � if"wH(jwj2)� ; (8)which admits the Hamiltonian structure w�w�� ! = i 0 1�1 0 !0BB@ �Hw�w�Hw�w� 1CCA ; (9)where the Hamiltonian is given byHw = Z ha jw� j2 � h2 jwj4 � ce� 2e212a "2 jwj6 ��i c� e4 " jwj2 (w��w � w�w�)�f2 " jwj2H(jwj2)�id�:(10)Here, Hw is also an invariant together with the momen-tum Mw = Z i(w��w � w�w�)d�: (11)Thus, from (6)E(u) = Z haju� j2 � h2 juj4 + ce+ e26a "2juj6 �� i c+ e4 " juj2 (u��u� u�u�)� f2 " juj2H(juj2)�id�; (12)M(u) = Z hi(u��u� u�u�)� ea" juj4i d�;are both invariants of the spatial Dysthe equation (4),but E is not the associated Hamiltonian. Note the ap-pearance of terms of O("2) in the invariants E and Hw.They both vanish if e is null; as a result u = w andE(u) = Hw becomes the Hamiltonian for u. As a con-sequence, the spatial Dysthe (1) for the wave envelopeB is non Hamiltonian since e = 2, whereas the wavepotential v is canonical (cf. eq. (3)). In the next section�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



Hamiltonian form of the spatial Dysthe equations 923we use a highly accurate Fourier-type pseudo-spectralmethod to solve for the envelope dynamics and validatethe invariance of the Hamiltonian (10) of w and the newinvariants (12) of u. In our numerical investigations, it isfound that they are conserved up to machine precision.3. Ground states and traveling waves. Insightsinto the underlying dynamics of the Dysthe equations areto be gained if we construct some special families of so-lutions in the form of ground states and traveling waves,often just called solitons or solitary waves. Hereafter,we do so for the Dysthe equation (4) for the envelopeu, but the associated Hamiltonian form (8) in w can betreated in a similar way. However, owing to the gaugetransformation (6) the envelope jwj = juj. We point outthat analytical solutions of (4) are available in terms ofmultiple-scale perturbations of the NLS-equation using,for example, direct soliton perturbation theory (see, forexample, [16, 13]). Consequently, we construct numer-ical solutions of ground states and traveling waves ofthe form u(�; �) = v(� � s�)e�i�� using the Petviashvilimethod ([11], see also [12]), where � and s are genericparameters and the function v(:) is in general complex.This numerical approach has been successfully appliedby [8] to compute ground states of their version of thetemporal Dysthe equation.As an application, consider the non-HamiltonianDysthe (2), particular case of (4) with parameters(1; 1; 8; 2; 2). Fig. 1 shows the action A of the ground
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Fig. 2. Envelopes juj of ground states of the spatial Dystheequation (2) for di�erent values of the steepness " (� = 3).Note that juj = jwj due to the gauge invariance (6)the asymptotic analysis carried out by [16] in the limitof "! 0.Furthermore, Fig. 3 illustrates a typical basin of at-traction of the Petviashvili scheme in the phase space
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Fig. 3. Numerical basin of attraction of the Petviashvilischeme in the phase space (s; �) for " = 0:15. Solitarywaves (localized traveling waves) occur below the grayboundary curve �, which separates the region of periodicwaves(s; �) for " = 0:15. Each black dot corresponds toa well converged solution up to machine precision,whereas white spots are associated to either divergentor converged-to-zero solutions. In particular, we notedthat the numerical scheme converged to localized trav-eling waves below the gray boundary curve � shown inFig. 3. On the other hand, the convergence to simpleperiodic waves occurred for points above �. This curveagrees with the analytical form derived from the exact�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 11 { 12 2011



924 F. Fedele, D. Dutykhnonlinear dispersion of periodic waves, which followsfrom (4) as s = (c � e)A2 + 2pa(�� hA2), where Ais the wave amplitude. Thus, localized traveling wavesbifurcate from �. This is clearly illustrated in Fig. 4,which reports the change in shape of the envelope juj
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ôFig. 5. Elastic collision of two NLS solitary waves travelingat the same speed s = 2, for � = 2
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Fig. 6. Initial (1) and �nal (2) shapes of one of the two soli-tons after the elastic collision of two NLS solitary wavestraveling at the same speed s = 2, for � = 2Fig. 8. The interaction of four solitons has similar in-elastic characteristics as shown in Fig. 9. This suggeststhe non-integrability of the Dysthe equation (2). Simi-lar dynamics is also observed for the associated Hamil-tonian form (8).4. Conclusions. A canonical variable for the spatialDysthe equation for the wave envelope u has been iden-ti�ed by means of the gauge transformation (6), and thehidden Hamiltonian structure is unveiled. Moreover, the
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Fig. 8. Initial (1) and �nal (2) shapes of one of the twosolitons after an inelastic collision of two Dysthe solitarywaves traveling at the same speed s = 2, for � = 2
tFig. 9. Inelastic collision of four Dysthe solitary wavesgauge invariance yields two new invariants for the non-canonical u. It is also found that the envelope v of theassociated wave potential is canonical.Further, the existence of solitary waves that bifurcatefrom periodic waves has been investigated numericallyby means of a highly accurate Petviashvili scheme. Inparticular, ground state solutions are in agreement withthe asymptotic analysis of [16]. Finally, the envelopedynamics has been investigated by means of highly ac-curate Fourier-type pseudo-spectral method up to ma-chine precision. It is found that solitary waves interactinelastically, suggesting the non-integrability of both theHamiltonian and non-Hamiltonian version of the spatialDysthe equations.
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