
Pis'ma v ZhETF, vol. 96, iss. 6, pp. 436 { 443 c 2012 September 25Nature of the quantum critical point as disclosed by extraordinarybehavior of magnetotransport and the Lorentz number in theheavy-fermion metal YbRh2Si2V.R. Shaginyan+�1), A. Z.Msezane�, K.G. Popov�, J.W. Clark�, M.V. Zverevr4, V.A.Khodelr�+Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia�Clark Atlanta University, GA 30314 Atlanta, USA�Komi Science Center UD of the RAS, 167982 Syktyvkar, Russia�McDonnell Center for the Space Sciences & Department of Physics,Washington University, St. Louis, MO 63130, USArRussian Research Centre \Kurchatov Institute", 123182 Moscow, Russia4Moscow Institute of Physics and Technology, 123098 Moscow, RussiaSubmitted 20 July 2012Resubmitted 6 August 2012Physicists are engaged in vigorous debate on the nature of the quantum critical points (QCP) governingthe low-temperature properties of heavy-fermion (HF) metals. Recent experimental observations of the much-studied compound YbRh2Si2 in the regime of vanishing temperature incisively probe the nature of its magnetic-�eld-tuned QCP. The jumps revealed both in the residual resistivity �0 and the Hall resistivity RH, along withviolation of the Wiedemann{Franz law, provide vital clues to the origin of such non-Fermi-liquid behavior. Theempirical facts point unambiguously to association of the observed QCP with a fermion-condensation phasetransition. Based on this insight, the resistivities �0 and RH are predicted to show jumps at the crossing of theQCP produced by application of a magnetic �eld, with attendant violation of the Wiedemann{Franz law. It isfurther demonstrated that experimentally identi�able multiple energy scales are related to the scaling behaviorof the e�ective mass of the quasiparticles responsible for the low-temperature properties of such HF metals.A quantum critical point (QCP) dictates thenon-Fermi liquid (NFL) low-temperature propertiesof strongly correlated Fermi systems, notably heavyfermion (HF) metals, high-temperature superconduc-tors, and quasi-two-dimensional 3He. Their NFLbehavior is so radical that the traditional Landauquasiparticle paradigm is at a loss to describe it. Theunderlying nature of the QCP has continued to defytheoretical understanding. Attempts have been madeusing concepts such as the Kondo lattice and involvingquantum and thermal uctuations at the QCP [1{5].Alas, when designed to describe one property deemedcentral, these approaches fail to explain others, eventhe simplest ones such as the Kadowaki{Woods relation[6, 7]. This relation, which emerges naturally whenquasiparticles of e�ective mass M� play the main role,can hardly be explained within the framework of atheory that presupposes the absence of quasiparticlesat the QCP (for recent reviews see [7{9]). Argumentsthat quasiparticles in strongly correlated Fermi liquids1)e-mail: vrshag@thd.pnpi.spb.ru

\get heavy and die" at the QCP commonly employthe assumption that the quasiparticle weight factor Zvanishes at the point of an associated second-orderphase transition [10, 11]. However, this scenario isproblematic [12, 13]. Numerous experimental facts havebeen discussed in terms of such a framework, but howit can explain the physics of HF metals quantitativelyis left as an open question [7]. A theory of fermioncondensation (FC) that preserves quasiparticles whilebeing intimately related to the unlimited growth of M�has been proposed and developed [7{9, 14, 15]. Exten-sive studies have shown that this theory delivers anadequate theoretical explanation of the great majority ofexperimental results in di�erent HF metals. In contrastto the Landau paradigm based on the assumptionthat M� is a constant, within FC theory M� dependsstrongly on both temperature T and imposed mag-netic �eld B. Accordingly, an extended quasiparticleparadigm is introduced. The essential point is that {as before { well-de�ned quasiparticles determine thethermodynamic and transport properties of stronglycorrelated Fermi systems, while the dependence of the436 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012



Nature of the quantum critical point as disclosed : : : 437e�ective massM� on T and B gives rise to the observedNFL behavior [7{9]. The most fruitful strategy for ex-ploring and revealing the nature of the QCP is to focuson those properties that exhibit the most spectaculardepartures from Landau{Fermi Liquid (LFL) behaviorin the zero-temperature limit. In particular, incisiveexperimental measurements recently performed on theheavy-fermion metal YbRh2Si2 have probed the natureof its magnetic-�eld-tuned QCP. It is found that atvanishingly low temperatures the residual resistivity�0 experiences a jump across the magnetic QCP, witha crossover regime proportional to T [16{19]. Jumpsof the magnetoresistivity, the Hall coe�cient, and theLorenz number at zero temperature are in conict withthe common behavior of Kondo systems, for which thewidth of the change remains �nite at zero temperature[19, 20]. Under the same experimental conditions inYbRh2Si2, the Hall coe�cient RH is also found toexperience a jump [17], while the data collected on heatand charge transport at the QCP can be interpreted asindicating a violation of the Wiedemann{Franz law [19].The Wiedemann{Franz law de�nes the value of theLorentz number L = �=T� at T ! 0, i.e., L = L0 withL0 = (�kB)2=3e2, where �, �, kB, and e are respectivelythe thermal conductivity, the electrical conductivity,Boltzmann's constant, and the charge of the electron.In this Letter we study magnetotransport and viola-tion of the Wiedemann{Franz law in YbRh2Si2 acrossa QCP tuned by application of a magnetic �eld. Closesimilarity between the behavior of the Hall coe�cientRH and magnetoresistivity � at QCP indicates thatall manifestations of magnetotransport stem from thesame underlying physics. We show that the violation ofthe Wiedemann{Franz law together with the jumps ofthe Hall coe�cient and magnetoresistivity in the zero-temperature limit provide unambiguous evidence for in-terpreting the QCP in terms of a fermion condensationquantum phase transition (FCQPT) forming a at bandin YbRh2Si2.We begin with an analysis of the scaling behaviorof the e�ective mass M� and T�B phase diagram of ahomogeneous HF liquid, thereby avoiding complicationsassociated with the crystalline anisotropy of solids [7].Near the FCQPT, the temperature and magnetic �elddependence of the e�ective mass M�(T;B) is governedby the Landau equation [21]1M��(T;B) = 1m +X�1 Z pFpp3F F�;�1 (pF;p)�� @n�1(p; T; B)@p dp(2�)3 ; (1)

where F�;�1(pF;p) is the Landau interaction, pF is theFermi momentum, and � is the spin label. To simplifymatters, we ignore the spin dependence of the e�ectivemass, noting thatM�(T;B) is nearly independent of spinin weak �elds. The quasiparticle distribution function ncan be expressed asn�(p; T ) = �1 + exp� ["(p; T )� �� ]T ���1 ; (2)where "(p; T ) is the single-particle (sp) spectrum. Inthe case being considered, the sp spectrum depends onspin only weakly. However, the chemical potential ��depends non-trivially on spin due to the Zeeman split-ting, �� = � � B�B, where \�" corresponds to stateswith the spin \up" or \down." Numerical and analyti-cal solutions of this equation show that the dependenceM�(T;B) of the e�ective mass gives rise to three di�er-ent regimes with increasing temperature. In the theoryof fermion condensation, if the system is located nearthe FCQPT on its ordered side, then the fermion con-densate (FC) represents a group of sp states with dis-persion given by [22]"(p; n)� � = T ln 1� n(p)n(p) ; (3)where � is the chemical potential and n(p) is the quasi-particle occupation number, which loses its temperaturedependence at su�ciently low T . On the ordered sidethe sp spectrum of the HF liquid contains a at portionembracing the Fermi surface; on the other hand, on thedisordered side, at �xed, �nite B and low temperatureswe have a LFL regime withM�(T ) 'M�+aT 2, where ais a positive constant [7]. Thus the e�ective mass growsas a function of T , reaching its maximum M�M at sometemperature TM and subsequently diminishing accord-ing to [23] M�(T ) / T�2=3: (4)Moreover, the closer the control parameter B is to itscritical value Bc0 = 0, the higher the growth rate. Inthis case, the peak value of M�M also grows, but thetemperature TM at whichM� reaches its peak value de-creases, so that M�M (TM ; B ! Bc0)!1. At T > TM ,the last traces of LFL disappear. When the system is inthe vicinity of the FCQPT, the approximate interpola-tive solution of Eq. (1) reads [7]M�M�M =M�N(TN) � c0 1 + c1T 2N1 + c2T 8=3N : (5)Here, TN = T=TM is the normalized temperature, withc0 = (1 + c2)=(1 + c1) in terms of �tting parameters c1�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012



438 V.R. Shaginyan, A. Z.Msezane, K.G.Popov et al.and c2. Since the magnetic �eld enters Eq. (2) in theform �BB=T , we conclude thatT=TM / T�BB ; (6)where �B is the Bohr magneton. It follows from Eq. (6)that TM ' a1�BB: (7)Equation (5) reveals the scaling behavior of the normal-ized e�ective massM�N(TN): values of the e�ective massM�(T;B) at di�erent magnetic �elds B merge into asingle mass value M�N in terms of the normalized vari-able TN = T=TM [7]. The inset in Fig. 1 demonstrates

Fig. 1. (Color online) Schematic T�B phase diagram ofHF liquid with magnetic �eld as the control parameter.The vertical and horizontal arrows show LFL{NFL andNFL{LFL transitions at �xed B and T , respectively. AtB = 0 the system is in its NFL state having a at bandand demonstrates NFL behavior down to T ! 0. Thehatched area separates the NFL phase and the weakly po-larized LFL phase and represents the transition area. Thedashed line in the hatched area represents the functionTM(B) given by Eq. (7). The functions W (B) / T andT �(B) / T shown by two-headed arrows de�ne the widthof the NFL state and the transition area, respectively. TheQCP located at the origin and indicated by an arrow de-notes the critical point at which the e�ective mass M�diverges and both W (B) and T �(B) tend to zero. The in-set shows a schematic plot of the normalized e�ective massversus the normalized temperature. The transition regime,where M�N reaches its maximum value at TN = T=TM = 1,is shown as the hatched area in both the main panel andthe inset. Arrows indicate the transition region and theinection point Tinf in the M�N plotthe scaling behavior of the normalized e�ective massM�Nversus the normalized temperature TN. The LFL phase

prevails at T � TM , followed by the T�2=3 regime atT & TM . The latter phase is designated as NFL due tothe strong dependence of the e�ective mass on temper-ature. The temperature region T ' TM encompassesthe transition between the LFL regime with almost con-stant e�ective mass and the NFL behavior described byEq. (4). Thus T � TM identi�es the transition regionfeaturing a crossover between LFL and NFL regimes.The inection point Tinf ofM�N versus TN is depicted byan arrow in the inset of Fig. 1.The transition (crossover) temperature TM (B) is notactually the temperature of a phase transition. Its spec-i�cation is necessarily ambiguous, depending as it doeson the criteria invoked for determination of the crossoverpoint. As usual, the temperature T �(B) is extractedfrom the �eld dependence of charge transport, for ex-ample from the resistivity �(T ) given by�(T ) = �0 +AT�R ; (8)where �0 is the residual resistivity and A is a T -independent coe�cient. The term �0 is ordinarily at-tributed to impurity scattering. The LFL state is char-acterized by the T�R dependence of the resistivity withindex �R = 2. The crossover (through the transitionregime shown as the hatched area in both Fig. 1 and itsinset) takes place at temperatures where the resistancestarts to deviate from LFL behavior, with the exponent�R shifting from 2 into the range 1 < �R < 2. Theschematic phase diagram of a HF metal is depicted inFig. 1, with the magnetic �eld B serving as the controlparameter. At B = 0, the HF liquid acquires a atband corresponding to a strongly degenerate state. TheNFL regime reigns at elevated temperatures and �xedmagnetic �eld. With increasing B, the system is drivenfrom the NFL region to the LFL domain. As shown inFig. 1, the system moves from the NFL regime to theLFL regime along a horizontal arrow, and from the LFLto NFL along a vertical arrow. The magnetic-�eld-tunedQCP is indicated by an arrow and located at the originof the phase diagram, since application of a magnetic�eld destroys the at band and shifts the system into theLFL state [7, 8, 9]. The hatched area denoting the tran-sition region separates the NFL state from the weaklypolarized LFL state and contains the dashed line tracingTM (B). Referring to Eq. (7), this line is de�ned by thefunction T = a1�BB, and the width W (B) of the NFLstate is seen to be proportional T . In the same way,it can be shown that the width T �(B) of the transitionregion is also proportional to T .In this letter we focus on the HF metal YbRh2Si2,whose empirical T�B phase diagram is reproduced inpanels a and b of Fig. 2. Panel a is similar to the�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012



Nature of the quantum critical point as disclosed : : : 439

Fig. 2. (Color online) Panel a represents a schematic phasediagram of the HF metal YbRh2Si2, with TN(B) denot-ing the N�eel temperature as a function of magnetic �eldB. The QCP, identi�ed by an arrow, is now shifted toB = Bc0. At B < Bc0 the system is in its antiferromag-netic (AF) state, denoted by AF. As in Fig. 1, the ver-tical and horizontal arrows show the transitions betweenthe LFL and NFL states, the functions W (B) / T andT �(B) / T indicated with bi-directional arrows de�ne thewidth of the NFL state and of the transition region, respec-tively, and the dashed line in the hatched area representsthe function TM(B) given by Eq. (7). The exponent �R de-termines the temperature-dependent part of the resistivity(cf. Eq. (8)), with �R taking values 2 and 1, respectively,in LFL and NFL states. In the transition regime the expo-nent evolves between LFL and NFL values. Panel b showsthe experimental T�B phase diagram [27, 19]. The evolu-tion of �R is depicted by color (coded in the vertical stripeon the right-hand side of the panel). The NFL behaviorreaches to the lowest temperatures right at the QCP tunedby the magnetic �eld. The transition regime between theNFL state and the �eld-induced LFL state broadens withrising magnetic �elds B > Bc0 and T � T �(B). As inpanel a, transitions from LFL to NFL state and from NFLto LFL state are indicated by the corresponding arrows, asare W (B) / T and T �(B) / Tmain panel of Fig. 1, but with the distinction that thisHF compound possesses a �nite critical magnetic �eldBc0 6= 0 that shifts the QCP from the origin. To avertrealization of a strongly degenerate ground state inducedby the at band, the FC must be completely eliminatedat T ! 0. In a natural scenario, this occurs by meansof an antiferromagnetic (AF) phase transition with anordering temperature TN = 70mK, while applicationof a magnetic �eld B = Bc0 destroys the AF state atT = 0 [24]. In other words, the �eld Bc0 places theHF metal at the magnetic-�eld-tuned QCP and nulli�esthe N�eel temperature TN(Bc0) = 0 of the correspondingAF phase transition [7, 25]. Imposition of a magnetic�eld B > Bc0 drives the system to the LFL state. Thus,

in the case of YbRh2Si2, the QCP is shifted from theorigin to B = Bc0. In FC theory, the quantity Bc0 isa parameter determined by the properties of the spe-ci�c heavy-fermion metal. In some cases, notably theHF metal CeRu2Si2, Bc0 does vanish [26], whereas inYbRh2Si2, Bc0 ' 0:06 T, B?c [24].Panel b of Fig. 2 portrays the experimental T�Bphase diagram in a manner showing the evolution ofthe exponent �R(T;B) [27, 19]. At the critical �eldBc0 ' 0:66 T (Bkc), the NFL behavior extends down tothe lowest temperatures, while YbRh2Si2 transits fromthe NFL to LFL behavior under increase of the appliedmagnetic �eld. Vertical and the horizontal arrows in-dicate, respectively, the transition from the LFL to theNFL state and its reversal. The functions W (B) / Tand T �(B) / T associated with bi-directed arrows de-�ne the width of the NFL state and transition region,respectively. It noteworthy that the schematic phase di-agram displayed in panel a of Fig. 2 is in close qualitativeagreement with its experimental counterpart in panel b.To calculate the low-temperature dependence of �on the imposed magnetic �eld B in the normal stateof YbRh2Si2, we employ a model of a HF liquid pos-sessing a at band with dispersion given by Eq. (3).Since the resistivity at T ! 0 is our primary concern,we concentrate on a special contribution to the residualresistivity �0 which we call the critical residual resis-tivity �c0. Analysis begins with the case B = 0, forwhich the resistivity of the HF liquid at low tempera-tures is a linear function of T [7, 28]. This observationis in accord with experimental facts derived from mea-surements on YbRh2Si2 indicating the presence of a atband in YbRh2Si2 [24, 7, 28, 29]. In that case, the ef-fective mass M�(T ) of the FC quasiparticles takes theform M�(T ) � �p2F4T ; (9)where � = �p=pF is determined by the characteristic size�p of the momentum interval L occupied by the FC [30].With the result (9) the width  of FC quasiparticles iscalculated in closed form,  � 0 + �T , where 0 isa constant [30]. This result leads to the lifetime �q ofquasiparticles ~=�q ' a1 + a2T; (10)where ~ is Planck's constant, a1 and a2 are parame-ters. Equation (10) is in excellent agreement with ex-perimental observations [31]. In general the electronicliquid in HF metals is represented by several bands oc-cupied by quasiparticles that simultaneously intersectthe Fermi surface, and FC quasiparticles never cover�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012



440 V.R. Shaginyan, A. Z.Msezane, K.G.Popov et al.the entire Fermi surface. Thus there exist LFL quasi-particles with the e�ective mass M�L independent of Tand FC quasiparticles with M� given by Eq. (9) at theFermi surface, and all of them possess the same width. Upon appealing to the standard equation� � Ne2M� (11)for the conductivity � (see e.g. [21]) and taking intoaccount the formulas specifying M� and , we �nd that� � Ne2=(pF�)2, where N is the number density of elec-trons. With this result, we arrive at a critical residualresistivity �c0 that is independent of T :�c0 � �2pFe2 : (12)Careful derivation and examination of Eqs. (11) and (12)is provided in [30]. The term \residual resistivity" is or-dinarily attributed to impurity scattering. In the presentcase, Eq. (12) shows that �c0 is determined by the pres-ence of a at band and has no relation to the scatteringquasiparticles by impurities.We next demonstrate that the application of a mag-netic �eld to the HF liquid generates the observed step-like drop in the residual resistivity �0. Indeed, Fig. 1informs us that at �xed temperature, application of the�eld B drives the system from the NFL state to the LFLstate, the at portion of "(p) determined by Eq. (3) be-ing destroyed at T < TM [7]. Thereupon the factor �vanishes, nullifying �c0 and strongly reducing �0. Sinceboth W (B) and T �(B) widths are proportional T , im-position of the magnetic �eld causes a step-like drop inthe residual resistivity �0. Consequently two values ofthe residual resistivity must be introduced, namely �NFL0corresponding to the NFL state and �LFL0 correspondingto the LFL state induced upon application of the mag-netic �eld B. It follows from these considerations that�NFL0 > �LFL0 . This conclusion agrees with the experi-mental �ndings [16, 17, 19].Fig. 2 shows the T�B phase diagram of YbRh2Si2,which maps faithfully onto the schematic phase dia-gram depicted in Fig. 1, except for the appearance ofan AF phase at low temperatures. As seen from Fig. 2,at T > TN and B = 0 the system in its NFL state,while the LFL phase prevails at low temperature formagnetic �elds beyond the critical value Bc0. The re-spective residual resistivities are measured at �NFL0 '' 0:55�
 � cm (NFL) and ' 0:5�
 � cm (LFL) [16]. AsT is lowered through TN at B = 0 the system enters theAF state via a second-order phase transition. Accord-ingly, we expect that the residual resistivity does notchange, remaining the same as that of the NFL state,

�NFL0 . On the other hand, under imposition of an in-creasing B-�eld, the system moves from the NFL stateto the LFL state with the above value of �LFL0 . At thispoint it should be acknowledged that application of aweak magnetic �eld is known to produce a positive clas-sical contribution/ B2 to �0 arising from orbital motionof carriers induced by the Lorentz force. When consid-ering spin-orbit coupling in disordered electron systemswhere electron motion is di�usive, the magnetoresistiv-ity may have both positive (weak localization) and neg-ative (weak anti-localization) signs [32]. However, asstudied experimentally, YbRh2Si2 is one of the purestheavy-fermion metals. Hence the applicable regime ofelectron motion is ballistic rather than di�usive, bothweak and anti-weak localization scenarios are irrelevant,and one expects the B-dependent correction to �0 to bepositive. We therefore conclude that the positive dif-ference �c0 = �NFL0 � �LFL0 comes from the contributionrelated to the at band. As seen from Fig. 3, when the

Fig. 3. (Color online) Experimental results [16] for the lon-gitudinal magnetoresistivity �(T;B) of YbRh2Si2 versus Bat various temperatures T . The maxima of the curves forT = 0:03 and 0:07 K correspond to boundary points of theAF ordered state shown in Fig. 2b. The solid lines markedwith 0 K represent the schematic behavior of the residualresistivity �0 as a function of B. The arrows pointing tothe horizontal solid lines identify the residual resistivities�NFL0 and �LFL0 in YbRh2Si2. The jump of �0 occurs at theQCP identi�ed by an arrowsystem transits from the NFL state to the LFL stateat �xed T and under application of elevated magnetic�elds B, the step-like drop in its resistivity �(T;B) be-comes more pronounced (see the experimental curvesfor T = 0:3; 0:2; 0:1 K). This behavior is a simple conse-quence of the fact that the width of the crossover regimeis proportional to T . On zooming into the vicinity of�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012



Nature of the quantum critical point as disclosed : : : 441QCP shown in Fig. 3 (corresponding for example to theexperimental curves for T = 0:07 and 0:03 K), it maybe seen that the crossover width remains proportionalto temperature, ultimately shrinking to zero and leadingto the abrupt jump in the residual resistivity at T = 0when the system crosses the QCP at B = Bc0. In thesame way, application of a magnetic �eld B to CeCoIn5causes a step-like drop in its residual resistivity, as is infact found experimentally [33]. Based on this reasoning,we expect that the higher the quality of both CeCoIn5and YbRh2Si2 single crystals, the greater is the ratio�NFL0 =�LFL0 , since the contribution coming from the im-purities diminishes and �NFL0 approaches �c0. It is alsoexpected from Eq. (12) that the observed di�erence �c0in the residual resistivities will not show a marked de-pendence on the imperfection of the single crystal unlessthe impurities destroy the at band. Finally, we pointout that the jump of the magnetoresistivity at zero tem-perature contradicts the usual behavior of Kondo sys-tems, with the width of the transition remaining �niteat T ! 0 [17, 20]. Moreover, the Kondo systems hasnothing to do with the dissymmetrical tunnelling con-ductance as a function of the applied voltage V that waspredicted to emerge in such HF metals with the at bandas CeCoIn5 and YbRh2Si2 [7, 34, 35]. Indeed, experi-mental observations have revealed that the conductanceis the dissymmetrical function of V in both CeCoIn5 [36]and YbRh2Si2 [29].The emergence of a at band entails a change of theHall coe�cient RH = �xyz=�2xx [37, 38]. In homoge-neous matter at B ! 0 one has �xx = �=3, while �xyzis recast to �xyz = e332 Z �dzdp�2 @n(z)@z dz; (13)where n(z) is the quasiparticle distribution function. Farfrom the QCP, these formulas lead to the standard re-sult RH = 1=Ne, whereas in the vicinity of the QCP, one�nds RH = K=Ne with K ' 1:5 [38]. We see then thatthe e�ective volume of the Fermi sphere shrinks consid-erably at the QCP. Importantly, in the LFL state wherethe e�ective mass stays �nite, the value K = 1 holdseven quite close to the QCP. As we have learned, thewidthW (B) tends to zero at the QCP, implying that thecritical behavior of K at T ! 0 emerges abruptly, pro-ducing a jump in the Hall coe�cient, while the height ofthe jump remains �nite. It is instructive to consider thephysics of this jump of RH in the case of YbRh2Si2. AtT = 0, the critical magnetic �eld Bc0 destroying the AFphase is determined by the condition that the ground-state energy of the AF phase be equal to the ground-stateenergy of the HF liquid in the LFL paramagnetic state.

Hence, at B ! Bc0 the N�eel temperature TN tends tozero. In the measurements of the Hall coe�cient RHas a function of B performed in YbRh2Si2 [17, 18, 39],a jump is detected in RH as T ! 0 when the appliedmagnetic �eld reaches its critical value B = Bc0 andthen becomes in�nitesimally higher at B = Bc0 + �B.At T = 0, application of the critical magnetic �eld Bc0,which suppresses the AF phase whose Fermi momentumis pF, restores the LFL phase with a Fermi momentumpf > pF. This occurs because the quasiparticle dis-tribution function becomes multiply connected and thenumber of mobile electrons does not change [7]. The AFstate can then be viewed as having a \small" Fermi sur-face characterized by the Fermi momentum pF, whereasthe LFL paramagnetic ground state at B > Bc0 hasa \large" Fermi surface with pf > pF. As a result,the Hall coe�cient experiences a sharp jump becauseRH(B) / 1=p3F in the AF phase and RH(B) / 1=p3fin the paramagnetic phase. Assuming that RH(B) isa measure of the Fermi momentum [37, 39] (as is thecase with a simply connected Fermi volume), we obtain[7, 40] RH(B = Bc0 � �)RH(B = Bc0 + �) ' 1 + 3pf � pFpF : (14)These observations are in excellent agreement with theexperimental facts collected on YbRh2Si2 [17, 18].Violation of the Wiedemann{Franz law at the QCPin HF metals was predicted and estimated a few yearsago [7, 41] and recently observed [19]. Predictions ofLFL theory fail in the vicinity of a QCP where the e�ec-tive mass M� diverges, since the sp spectrum possessesa at band at that point. In a once-standard scenario forsuch a QCP [10, 11], the divergence of the e�ective massis attributed to vanishing of the quasiparticle weight Z.However, as already indicated, this scenario is awed[12]. We therefore employ a di�erent scenario for theQCP, in which the departure of the Lorenz number Lfrom the Wiedemann{Franz value is associated with arearrangement of sp degrees of freedom leading to a atband. Within the quasiparticle paradigm, the relationbetween the Seebeck thermodynamic coe�cient S andthe conductivities � and � has the form [42, 43]�(T )�(T )T + S2(T ) = 1e2 I2(T )I0(T ) : (15)Here S(T ) = 1e I1(T )I0(T ) ; (16)withIk(T ) = � Z ��(p)T �k�d�(p)dp �2�(�; T )@n(p)@�(p) d�; (17)�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 5 { 6 2012



442 V.R. Shaginyan, A. Z.Msezane, K.G.Popov et al.where � is the collision time, d� is the volume elementof momentum space, and n(p) is given by Eq. (2) with� = "� �. Overwhelming contributions to the integralsIk come from a narrow vicinity j�j � T of the Fermisurface. In case of LFL, the Seebeck coe�cient S(T )vanishes linearly with T at T ! 0. Then, the group ve-locity can be factored out from the integrals (17). Thesame is true for the collision time � , which at T ! 0depends merely on impurity scattering, and one obtainsI1(T = 0) = 0 and I2(T ! 0)=I0(T ! 0) = �2=3.Inserting these results into Eq. (15), we do �nd thatthe Wiedemann{Franz law holds, even if several bandscross the Fermi surface simultaneously [42]. On the otherhand, taking into account the fact that the reductionof the ratio L=L0 occurs in the NFL state at the QCP[41], we conclude that the violation of the Wiedemann{Franz law takes place in the narrow segment of the T�Bphase diagram displayed in Fig. 2 having width W ! 0at T ! 0. In other words, at T ! 0 the ratio L=L0becomes abruptly L=L0 � 0:9 at B=Bc0 = 1, whileL=L0 = 1 at B=Bc0 6= 1 when the system is in its AFor LFL state shown in Fig. 2. This observation is ina good agreement with experimental facts collected onYbRh2Si2 [19]. We conclude that at T ! 0, the WF lawholds in the LFL state at which the Fermi distributionfunction given by Eq. (2) is reduced to the step func-tion. The violation at B = Bc0 and at T ! 0 seen inYbRh2Si2 thus suggests that a sharp Fermi surface doesexist at B=Bc0 6= 1 but does not exist only at B=Bc0 = 1where the at band emerges.Among other features, Fig. 4 includes results (solidlines) for the characteristic temperatures Tinf(B) andTM (B), which represent the positions of the kinks sep-arating the energy scales identi�ed experimentally inRefs. [16, 17, 44]. The boundary between the NFL andLFL phases is indicated by a dashed line, while AF la-bels the antiferromagnetic phase; again the correspond-ing data are taken from Refs. [16, 17, 44]. It is seenthat our calculations are in accord with the experimentalfacts. In particular, we conclude that the energy scalesand the widths W and T � are reproduced by Eqs. (5)and (7) and related to the special points Tinf and TM as-sociated with the normalized e�ective mass M�N, whichare marked with arrows in the inset and main panel ofFig. 1 [7, 45].In summary, we have shown that imposition of amagnetic �eld on YbRh2Si2 leads to the emergence ofthe quantum critical point at which a strong suppres-sion of the residual resistivity �0 is accompanied bothby a jump of the Hall resistivity and a violation of theWiedemann{Franz law. The close similarity betweenthe behaviors of the Hall coe�cient RH, magnetoresis-
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