
Pis'ma v ZhETF, vol. 96, iss. 7, pp. 534 { 538 c 2012 October 10Scheme for realizing entanglement concentration via generalizedmeasurementsCh.-Q.Du, M.Yang1), Y. Lu, Zh.-L. Cao+Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education,School of Physics & Material Science, Anhui University, 230039 Hefei, People's Republic of China+School of Electronic Information Engineering, Hefei Normal University, 230061 Hefei, People's Republic of ChinaSubmitted 14 February 2012Resubmitted 7 August 2012How to concentrate non-maximally entangled states for quantum communication is a fundamental problemin quantum information. In this paper, we will apply generalized measurements to entanglement concen-tration of known non-maximally entangled pure states in arbitrary dimensional system. How to design thegeneralized measurements for the unambiguous discrimination of linearly independent non-orthogonal states iscrucial for the concentration of the known non-maximally entangled states. The result shows that, any knownnon-maximally entangled pure state (for arbitrary dimensional system) can be transformed to the maximallyentangled state only by introducing a qubit as ancilla and a joint unitary transformation operation on one ofthe entangled particles and the ancilla. In addition, because the less entangled state of each fail round will bere-concentrated too, the entanglement waste during the concentration process will be greatly reduced.1. Introduction. Quantum entangled states play avery important role in quantum communication. The �-delity and e�ciency of quantum communication are bothdetermined by the entanglement degree of quantum en-tangled state serving as quantum channel. Only whenthe quantum entangled state we use is a maximally en-tangled state, the �delity and e�ciency of quantum com-munication are both 1:0. However, there exists interac-tions between a quantum system and its surroundingenvironment inevitably. Meanwhile quantum operationswill bring in some errors. So the quantum entangledstates we achieve in experiments are all non-maximallyentangled states. They will reduce the �delity and e�-ciency of quantum communication and weaken quantumcommunication's capacity. To achieve quantum commu-nication with high �delity and e�ciency, we must trans-form the non-maximally entangled states into maximallyentangled ones. This transformation is called entangle-ment concentration for pure states [1, 2] or entanglementpuri�cation for mixed states [3].Up to now, there exist two kinds of entanglementconcentration methods: Schmidt projection scheme andProcrustean scheme [1]. Schmidt projection scheme re-quires operating on multiple pairs of particles in identi-cal non-maximally entangled states in each round. Pro-crustean scheme only needs one pair of particles in non-maximally entangled state in each round, but, we mustknow the detailed form of the non-maximally entangledstate. Moreover, Procrustean scheme is a probabilistic1)e-mail: mingyang@ahu.edu.cn

one. If we only operate on one pair of the particles innon-maximally entangled state, we can achieve the max-imally entangled states with a �nite probability. But, ifwe operate on multiple pairs of particles in identical non-maximally entangled state, a smaller (compared with thenumber of the pairs before concentration) number of theparticle pairs can be kept in maximally entangled states,and the rest pairs will remain in non-maximally entan-gled states. In addition, entanglement swapping can beused to realize the entanglement concentration [2, 4]. Infact, entanglement swapping is a special kind of Schmidtprojection process [2], and can be realized with the helpof quantum state discrimination [5].Many entanglement concentration schemes for two-state systems (qubits) have been presented. TheSchmidt-projection-based concentration schemes havebeen proposed both theoretically [6{9] and experimen-tally [10, 11] in linear optics system. In cavity QEDsystem, many entanglement concentration schemes havebeen presented too [12{15], and most of these entan-glement concentration schemes are based on the Pro-crustean method. Paunkovi�c et al. proposed an entan-glement scheme by using quantum statistics [16]. A re-cent review paper has reviewed most of the advances ofthe entanglement concentration and entanglement puri�-cation for the qubit system [17]. The result shows thatthere exists a special kind of entanglement, which cannot be distilled. It is called bound entanglement [18].For a pure nonmaximally entangled state, the boundentanglement is zero [18], which means the entangle-ment in a pure nonmaximally entangled state can be534 �¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



Scheme for realizing entanglement concentration : : : 535completely converted into the singlet form in principle.But, the current existing concentration schemes for purenonmaximally entangled states can only extract the to-tal entanglement of the initial state in an asymptoticway [1]. This asymptotic scheme is just an idea sit-uation, and the implementation of it is a really toughgoal. To enhance the e�ciency of the concentrationprocess, we have proposed a scheme for qubit system[12], where the entanglement in the failed state in eachround of the concentration has been re-concentratedtoo. So, the waste in the original concentration processhave been greatly reduced. Simple calculations showthat the above-mentioned concentration schemes cannotconcentrate the nonmaximally entangled states of high-dimensional system.However, high-dimensional quantum systems havemany merits with respect to the qubit systems. Maxi-mally entangled states in high-dimensional quantum sys-tems violate local realism stronger than the ones in two-state systems [19]. High-dimensional quantum systemcontains more information and enhances the noise lim-itation determined by quantum secret key distributionscheme [20, 21], and so on. Recently, high-dimensionalentangled states have been generated experimentally inquantum optical systems by using the polarization free-dom [22], time freedom [23], orbital angular momentumfreedom [24], and space freedom [25], respectively.So the research on entanglement concentration inhigh-dimensional system has great physical signi�cance.Yao et al. presented a scheme for realizing entangle-ment concentration of high-dimensional non-maximallyentangled states via many ancillas which not only havethe same dimension as the original system but also mustbe in the states depending on the original state [26].These will increase the di�culty in experiment. Vaziri etal. made use of photon's orbital angular momentum torealize entanglement concentration of three-dimensionalnon-maximally polarized entangled states via the gener-alized Procrustean scheme [27].As in the qubit system, the existing entanglementconcentration schemes for high-dimensional system areasymptotic ones, and the e�ciency is to be enhancedtoo. In this paper, we want to present a theoret-ical scheme to realize entanglement concentration ofpure known nonmaximally entangled states for high-dimensional system via generalized measurements. Theadvantage of this scheme is twofold. Firstly, this schemeonly needs one qubit as ancilla, so it can be easily car-ried out. On the other hand, the left less entangledstate in each fail round will be re-concentrated, whichgreatly reduces the entanglement waste in the concentra-tion process. Although, here, the scheme is mainly based

on the quantum state discrimination, we only need onepair of the non-maximally entangled particles in eachround, which makes the current scheme simpler and eas-ier to implement in experiments.2. POVM-based concentration of bipartitenon-maximally entangled pure states. Accordingto Neumark theorem, we can realize any given POVMthrough expanding the state space to a larger one andcarrying out proper unitary operations and orthogonalmeasurements in the larger space. Now, the realizationof entanglement concentration of known states is castinto the problem of how to design the corresponding uni-tary transformation of the POVM in the larger space.If we have a known pure non-maximally entangledstate, it can be rewritten in the Schmidt form:j	i = n�1Xj=0 cj j�jij�ji; (1)where fj�jig and fj�jig are orthonormal bases for par-ticle 1 and particle 2, respectively. The letter n isthe dimension of the systems involved and the super-position coe�cients cj satisfy the normalization relationPn�1j=0 jcj j2 = 1. Through the discrete Fourier transfor-mation, the basis of particle 1 can be transformed intoFourier-transformed basis:jki = 1pn n�1Xj=0 exp��2�ijkn � j�ji; (2)where k and j are both integers and run from 0 to n�1.Because of1n n�1Xj=0 exp ��2�ij(k � k0)n � = �k;k0 ; (3)we can prove that jki is still a set of orthonormal basis.Now j	i can be rewritten in the following form:j	i = 1pnXk jkij ki; (4)where j ki = Pn�1j=0 cj exp( 2�ijkn )j�ji (k = 0, 1, 2, : : : ,n � 1) are the corresponding states for particle 2. We�nd that all of the probability amplitudes are equal inEq. (4). So long as the states fj kig form a set of ortho-normal basis, j	i will be a maximally entangled state.Unfortunately, fj kig cannot form a set of orthonormalbasis, however, we can prove that they are linear inde-pendent [28]. According to the discussion in Ref. [28],the POVM operators Ak distinguishing non-orthogonalstates for particle 2 can transform fj kig into a set oforthogonal states. Because fj kig is not a set of orthog-onal states, we can't distinguish them unambiguously.�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



536 Ch.-Q.Du, M.Yang, Y. Lu, Zh.-L.CaoThis shows that there must be an inconclusive opera-tor AI , and it can't give any information of the states,which means entanglement concentration fails. Obvi-ously, there is a completeness relationAyOAO +AyIAI = I; (5)where AyOAO = Pn�1k=0 AykPn�1k=0 Ak . So longas we can realize all of the POVM operatorsAk; k = 0; 1; 2; : : : ; n� 1, simultaneously, we candistinguish the non-orthogonal states fj kig with someprobability, and now the non-orthogonal set fj kig havebeen transformed into a set of orthogonal states. WhenPOVM measurement acts on particle 2, there will betwo outcomes: AyOAO and AyIAI . The outcome AyOAOshows that we have transformed a set of non-orthogonalquantum states fj kig into a set of orthogonal quantumstates fj�kig. But the outcome AyIAI shows that theconcentration process fails. According to the discussionin Ref. [28], we can getAk = P 1=2h ?k j ki j�kih ?k j; (6)where P = n�min(jcj j2) is the successful probability ofdistinguishing the non-orthogonal quantum states. Here,j ?k i = N�1=2 n�1Xj=0 c�j�1 exp�2�ijkn � j�ji (7)are orthogonal complement states of j ki, and it meansj ?k i and j ki satisfy the following relationh ?k j k0i = npN �k;k0 : (8)Here, N = Pn�1j=0 jcj j�2 and fj�kig is another set oforthonormal basis. It is not di�cult to see thatAyOAO = n�1Xk=0Ayk n�1Xk=0Ak = n�1Xk=0AykAk: (9)He and Bergou proposed a scheme to realize POVMmeasurement in Ref. [29]. We will adopt this scheme torealize the above mentioned POVM measurement anddesign the unitary transformation U we need to realizeentanglement concentration of the non-maximally entan-gled states. First, let's introduce another particle (la-beled by 3) as an ancilla qubit. The ancilla particle 3is prepared in state j03i. Now, the n-dimension Hilbertspace expanded by the state j ki becomes a subspace of2n-dimension Hilbert space of particles 2 and 3. Accord-ing to the above discussion and with the help of Eq. (3),we can get AyOAO :

AyOAO =Xk Pjh ?k j kij2 j ?k ih ?k j ==Xj jcj j�2min(jcj j2)j�jih�j j: (10)According to the completeness relation in Eq. (5), theremust exist another operator labeled by AyIAI :AyIAI = I �AyOAO ==Xj [1� jcj j�2min(jcj j2)]j�jih�j j; (11)and it is diagonalized already. De�ne two Hermitianoperators:AyO = AO = n�1Xj=0 jcj j�1min(jcj j)j�jih�j j; (12)AyI = AI = n�1Xj=0q1� jcj j�2min(jcj j2)j�jih�j j: (13)With the help of these POVM elements and their cor-responding forms, we can design a unitary transfor-mation U =  AO �AIAI AO ! ; acting in the expanded2n-dimension Hilbert space. It can be proven thatU is unitary. Apply the unitary transformation U ==  AO �AIAI AO ! on the 2n-dimension Hilbert spaceexpanded by particles 2 and 3, and carry out an VonNeumann projection measurement on the particle 3.According to the outcomes, we can judge whether thestates discrimination or the entanglement concentrationis successful or not: the outcome j03i shows entangle-ment concentration is successful, and the outcome j13ishows entanglement concentration fails. The probabilityof successful entanglement concentration is equal to theprobability of distinguishing the non-orthogonal quan-tum states j ki successfully, P = n � min(jcj j2) [28].If we get j13i, the state of particles 1 and 2 is still anon-maximally entangled state, we can design anotherunitary transformation U 0 to realize entanglement con-centration further. That is to say, by using the currentscheme, we can even make use of the garbage state (failstate in the concentration process), and the garbage statecan be concentrated too. This point can be clearly seenin the following example. In this sense, the current con-centration scheme can concentrate the entanglement ofnon-maximally entangled state as much as possible.3. An example. In this section, we will give anexample to examine the scheme we presented in Section2. Suppose there is a non-maximally entangled state:�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012



Scheme for realizing entanglement concentration : : : 537j�i = 1p3 j0Aij0Bi+ 1p6 j1Aij1Bi+ 1p2 j2Aij2Bi; (14)where fj0Ai; j1Ai; j2Aig and fj0Bi; j1Bi; j2Big are ortho-normal bases for particle A and particle B, respectively.Express the state in the Fourier-transformed basis onparticle A, we can get:j�i = 1p3 j0i� 1p3 j0Bi+ 1p6 j1Bi+ 1p2 j2Bi�++ 1p3 j1i� 1p3 j0Bi+ 1p6 exp�2�i3 � j1Bi++ 1p2 exp�4�i3 � j2Bi�++ 1p3 j2i� 1p3 j0Bi+ 1p6 exp�4�i3 � j1Bi++ 1p2 exp�2�i3 � j2Bi�; (15)where j0i = 1p3(j0Ai+ j1Ai+ j2Ai);j1i = 1p3�j0Ai+ exp��2�i3 � j1Ai++ exp��4�i3 � j2Ai�;j2i = 1p3�j0Ai+ exp��4�i3 � j1Bi++ exp��2�i3 � j2Ai�; (16)are a set of fourier basis of particle A. In the new form,the coe�cients of j�i are equal. If we can transform theset of linear independent state vectors in the parenthe-ses of Eq. (15) into a set of orthogonal states, j�i willbecome a maximally entangled state.Introduce a 2-dimensional ancilla particle C pre-pared in state j0Ci. According to the discussion in Sec-tion 2 we can design the corresponding unitary transfor-mation:
UBC = 0BBBBBBBBB@

1p2 0 0 � 1p2 0 00 1 0 0 0 00 0 1p3 0 0 �p2p31p2 0 0 1p2 0 00 0 0 0 1 00 0 p2p3 0 0 1p3
1CCCCCCCCCA ; (17)

which will be applied on particles B and C. Then weget

IA 
 UBC j�ij0Ci == 1p2� 1p3 j0Aij0Bi+ 1p3 j1Aij1Bi++ 1p3 j2Aij2Bi�j0Ci++ 1p2  1p3 j0Aij0Bi+ p2p3 j2Aij2Bi! j1Ci: (18)Then the Von Neumann projection measurement on theancilla particle C will tell us whether the concentra-tion process succeed or not. The outcome j0Ci showsentanglement concentration succeeds, and the outcomej1Ci shows entanglement concentration fails. The suc-cess probability is P1 = 3� 16 = 12 . In addition, we �ndthe fail state 1p3 j0Aij0Bi+ p2p3 j2Aij2Bi is still a bipartitenon-maximally entangled state. We can design anotherunitary transformation to realize entanglement concen-tration of it with probability P2 = (1�P1)� 2� 13 = 13 .So the total success probability of the concentrationprocess is P = P1 + P2 = 0:8333. EF, entanglementof formation [30], is the maximum of the distillable en-tanglement [31]. Because the initial state is a pure state,there is no bound entanglement inside it [18]. So, wecan use EF to describe the distillable entanglement. EFof the quantum state j�i is 0:9206 [32]. Obviously, thedistillable entanglement is a little bit larger than the suc-cess probability (0:8333) of the concentration process.Although our scheme is not the optimal one, the entan-glement waste during the concentration process has beengreatly reduced.4. Summary. In this paper, we present a schemeto realize entanglement concentration of non-maximallyentangled pure states in arbitrary dimensional systemsvia generalized measurements (POVM). How to designthe joint unitary transformation on one of the entan-gled particles and the ancilla is crucial to the scheme.In fact, the unitary transformation realizes the entan-glement concentration and a quantum state discrimina-tion simultaneously. A qubit ancilla and a joint unitarytransformation on the ancilla and one of the entangledparticles will be su�cient for the concentration. Surpris-ingly, the previous works on the entanglement concen-tration are only the applications of the current universalscheme [12{14]. The advantage of this scheme is twofold.On one hand, to concentrate the known non-maximallyentangled pure states in arbitrary dimensional systemsonly needs one qubit as ancilla particle, which greatly re-duces the complexity of experiments. On the other hand,the left less entangled state in each fail round will be re-concentrated, which greatly reduces the entanglementwaste in the concentration process. But we must know�¨±¼¬  ¢ ���� ²®¬ 96 ¢»¯. 7 { 8 2012
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