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A theory of photoluminescence due to radiative trapping of 2D electrons from a
confinement layer on neutral impurity centers is presented. In the dependence
of the emission band position on the filling factor v there are cusps at fractional
values ¥ = p/q, these cusps are closely connected to cusps in the ground state
energy of interacting 2D electrons; the latter cusps arising due to formation of
incompressible liquids at these points. The effect of the finite state interaction on
the cusp shape is investigated, and the possibility for determining Coulomb gaps
from cusp strengths is discussed.

The incompressible two-dimensional (2D) electron liquid * which manifests
itself in the fractional quantum Hall effect 2 is one of the most remarkable objects
of the modern solid state physics. Surveys may be found in 3-5. However, the
number of experimental methods permitting to measure parameters of the 2D
liquid is highly restricted. Recently spectroscopic observations of the 2D liquid
have been reported 6=°. In particular, numerous features in the dependence of
the position of photoluminescence band corresponding to radiative trapping of
2D carriers by neutral acceptors on the filling factor v have been observed (see
67 and references therein). These features may be attributed to the electron-
electron interaction and can be described in terms of steps. Theoretical papers
on the photoiuminescence in a strong magnetic field which are not based on the
mean field approximation, and which accordingly may be applied for describing
the quantum liquid are not numerous yet. The papers 1011 deal with the effect of
spin polarization on optical spectra, and the papers 1012 with Auger processes. It
has been shown 12 that under some conditions the energy A, of the magneto-roton
minimum % may be found from the shape of the impurity erission spectrum. We
show in this paper that the gap A for quasielectron-hole pairs ! to be created may
be found from the dependence of the center-of-gravity @ of the emission band
corresponding to trapping of electrons from the 2D liquid by neutral impurity
centers on v. According to the theory for fractional v = P/q = vpg, pis an
integer, ¢ is an odd integer, in the dependence w(v) one can expect cusps and
discontinuities in the derivative, d @/dv , in these points are connected to the
gaps, A, in them. The fact that the effect of the impurity centers on 2D electrons
is weak in the initial state is a distinctive feature of this type of transitions,
apparently it can be neglected. It is this assumption that is of crucial importance
for the procedure of determining A from experimental data on cusps strengths
discussed in what follows.
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The model used below is as follows. In the initial state the electron density
is homogeneous over the confinement layer and an impurity center by which an
electron is trapped is neutral. The distance h of the impurity center from the
confinement layer and the magnetic length I = \/c/eH (h=1) exceed considerably
both the layer width and the center radius rim,. These both quantities are
neglected as well as the initial state interaction of the impurity center with 2D
electrons. The potential of the impurity center in the final state is a Coulomb
one. The temperature T = 0, in the initial state the system of electrons is
on its ground level 1, if this level is degenerate all the states belonging to it
are equally populated. A magnetic field is strong, w. > ec = €*/kl, here w, is
the cyclotron frequency, €c is the Coulomb energy, x is the dielectric constant.
Mixing of different Landau levels is disregarded. The quantum transition occurs
at the point 7y which is the point of the 2D layer closest to the impurity center.
This recombination scheme is especially well suited for describing the trapping of
electrons from a deep quantum well by neutral shallow acceptors residing near it.
Numerical calculations are performed in the spherical geometry 4. Therefore, all
equations are written for a homogeneous system with a finite number of particles.

The normalized first moment of the emission spectrum (i.e., divided by its
zero moment) determines the position of the center-of-gravity. It equals

GZE.'——(IIJ>“ , (1)
where E; is the energy of the 1 level, i.e., of the ground state of N interacting
particles. H is the Hamiltonian of the system in its final state, i.e., the Hamil-
tonian of (N — 1) interacting particles 1, ...,y in the 2D layer subjected to
repulsive Coulomb center at the point f7 where the impurity center resides, see
12, The symbol {...)ay stands for averaging over wave functions W, (7, ...7x) of
all the states a belonging to the ¢ level under the condition ¥y = 7. For the
energy of the "excess” electron existing in the initial state the difference of the
ground Landau level in the conduction band and the impurity level is chosen as
the reference point. Hence, @ only includes the Coulomb interaction energy.

It is convenient to introduce the pair correlation function

9(Ipn = pnv—1]) = (N - 1)AR " /[‘IJ,,(F] Nl GO L Y L T
a

/g(p)d/?= N-1, (2)

here g; is the multiplicity of the i level, A is the area of the 2D layer, 5 = /L.
In the thermodynamic limit g(r) — v/2r at p — co. The function g depends
only on the difference p = |fy — pn—1| since due to summation over « in (2) it
possesses the full symmetry of the system prior to the optical transition when
the impurity center is neutral and does not perturb 2D electrons. For the same
reason all integrals entering (Hy),, may be expressed through the function g.
The Hamiltonian H; equals

N-1 N-1
He=Y V(-al)- D V(s -al) , i<k, (3)
jk=1 j=1
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here V(p) is the electron-electron interaction potential. The potential of the
positive background ensuring the electric neutrality of the system is omitted
since it makes no contribution to energy differences which are our final results.
As

% / V(e)e(p)di = E, , (4)

the eq.(1) may be rewritten as

@ = [(V(5-71)- V05t - 7Delldo - F)d7

= 2B/N ~ [ V(51 - #D(15o - 71)d5 . 5)

The integration in (4) and (5) is performed over 2D layer.

Let us consider first short range potential V'(r). In this case the second term
in (5) may be omitted when the distance h = |fy — 75| of the point 77 from
the confinement layer is larger than the potential radius. When one takes into
account that dE;/ON = p, where p is the chemical potential, and u(v) is a

discontinuous function of v at ¥ = v, 1°
6p = p(vpg +0) — p(vpg —0) =qA , (6)
it is easy to obtain from (5)
A = (v/2q) §{d@/av} . (7)

Therefore, the function & must show cusps in the points wpy, the discontinuity
in the derivative permits to find a gap. It is clear from (5) that these cusps are
closely connected to cusps of the function E;(v) 1. A magnitude of §{0w/0N}
will be termed below a cusp strength.

The long range Coulomb behavior of V' (r) does not permit to disregard the
second term in (5), the both terms contribute to the cusp strength. In fact,
the singularities of @W(v) appear due to a nonanalytical behavior of g treated
as a function of v. The previous computations imply 1617 that the behavior
9(p) = 91(p) + |v — vpg|92(p) near the points ¥ = vy, here g; and g, are smooth
functions of v. Such a behavior results in cusps in the both integrals of eq.(5).
If h— 0, then @ = 0. This means that the intrinsic and extrinsic terms cancel
one another and the interaction does not affect the position of the emission band.
For intermediate values of h the extrinsic contribution to the cusp strength may
have a considerable magnitude, but is less than the intrinsic contribution. The
general expression for the cusp strength is

s{aw/ov} = 28 /v - [ V(51 - ) 5{3e(ldo -~ A/ovdds . (8)

In the expansion of eq.(8) at h>>[ the term ~ h~! is absent due to normalization
condition (2), at h <! the expansion starts with the term ~ hZ,
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The function g(p) has been found by us in the spherical geometry 14,18 for
three values of v: v = 1/3 and in the two neighbour points. The function
6{0g(p)/dv} at v = 1/3 found by means of these data is shown in Fig.la. It
exhibits the p? behavior at p < 1 and one strong oscillation. Oscillations at p > 5
decrease with increasing N. This function has been used to calculate in the plane

geometry the last term in (8) as a function of A, it is shown in Fig.1b. In the
limit cases

_ 18A — 37¢.(I/h)3 for h>l
5{(3 ’
{0@/ov} = { 0.77(h/1)? for h<l | (®)

the coefficients in (9) have been found by extrapolation 1/N — 0. A rapid
decrease of the extrinsic term with increasing h may considerably facilitate de-
termining the gaps from experimental data on cusp strengths.
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Fig.1. a). Function §{3g(p)/8v} found in the spherical geometry for different
number N of particles; »=1/3.

b). Extrinsic contribution to the cusp strength (second term in eq.(8)) vs. dis-
tance h, ¥=1/3. The heavy line is obtained by extrapolation 1/N —0. Energy is
in €c units. Inset: magnitude of the coefficient at (I/A)® in (9) found for different
number of particles.

In Fig.2 and 3 are shown the first moment of the spectrum and the width « of
the emission band versus the integer parameter 25, S = (R/l)?, R is aradius of a
sphere, N = 6. The width ~ is defined as 4? = (w*® — @*). The impurity center is
inside the sphere at a distance h* from its north pole 2. The dependence @(2S)
is shown in Fig.2 for three values of h*/R, it is natural to put the value h* =R
into correspondence with h=oco0 in the plane geometry. Three cusps are seen on a
smooth background, all of them correspond to nondegenerate ¢ states. The cusp
25 = 15 corresponds to v = 1/3 (according to equation 25 = (N — 1)/v 18 ), the
cusp 28 = 9 to v = 2/3 (according to charge symmetry relation: » — (1 — v),
N — (25 +1) — N ), the cusp 25 = 11 has no definite assignment. The cusps
v = 1/3 for N = T are shown for comparison. The cusp strength increases with

h* in accordance with (9). In Fig.3 4(2S) is shown for three values of h*/R. It

is seen that « strongly depends on S, to all the cusps minima of 4 correspond.
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The larger the distance of amn impurity center from the 2D layer is, the deeper
these minima are.

The basic assumption used above is that an impurity center does not affect 2D
electrons in the initial state. This interaction is small as compared to ¢¢ in the
parameter ri,,/h. Nevertheless, it may prove to be important since it reduces
the symmetry and lifts up the degeneracy of the ground ievel. This may result
in discontinuities of the function @(v) (and not only of its derivative) having the
scale of A,, for examples see 12, The actual effect of the initial state interaction
on the optical spectrum depends on the magnitudes of T', A, rip,, the discontinu-
ities must be smeared by disorder and also by the nonequilibrium distribution of
photoproduced charge carriers. The recombination scheme used above imposes
some restrictions on the magnitude of h. For a shallow acceptor near a deep
quantum well the appropriate condition is h < I? /rim,. The dependence of the
shape of @(v) curves on the recombination scheme must be also investigated.

For the discussion of experimental data from the standpoint of this paper see
the next paper in this issue 9.

In conclusion, gaps in the energy spectrum of the incompressible 2D liquid
may be found from cusps of the function @(v) for radiative trapping of 2D elec-
trons on neutral impurities. Due to a rapid decrease of the extrinsic contribution
to the cusp strength with h this method may be hopefully efficient for actual
distances of impurity centers from the confinement layer.

We are highly grateful to I.V.Kukushkin and V.B.Timofeev for discussing
experimental data and to S.V.lordanskii and V.I.Fal’ko for useful comments.
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