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Ionization of heliumlike ions with excitation of nl states by high-energy

photon scattering
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We consider the inelastic high-energy photon scattering on heliumlike ions in the ground state, which

results in ionization accompanied by simultaneous excitation of the residual ion. Nonrelativistic perturbation

theory is employed as a method. The cross sections of the process for transitions into the ns and np states are

deduced in the analytical form. A comparison of our results with those of approximated calculations is given.
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The ionization with excitation caused by impact of a

single photon is one of the fundamental processes, which

occurs exclusively due to the interelectron correlations

and, therefore, serves as a tool for quality test of dif-

ferent theoretical models. Two-electron targets are the

simplest atomic systems, where this process can take

place. Analytical results for cross sections are of parti-

cular importance.

Up to now, the experimental investigations have

been mainly focused on helium atom [1–3]. However,

due to recent developments of novel sources of syn-

chrotron radiation, the study of correlated processes

become actual for other atomic targets, in particular,

for heliumlike ions. Multicharged ions allow of consis-

tent description within the framework of QED pertur-

bation theory. The bound K-shell electron is charac-

terized by the averaged momentum η = mαZ and the

binding energy I = η2/(2m), where Z is the nuclear

charge, α is the fine-structure constant, and m is the

electron mass (~ = 1, c = 1). Photoionization of heli-

umlike ions accompanied by excitation of the nl states

is studied within entire nonrelativistic range of the inci-

dent photon energies ω1 ≪ m, including the threshold

range [4, 5]. However, at asymptotically high energies

ω1 ≫ η, the process of ionization with excitation oc-

curs predominantly due to the photon scattering, but

not due to the photoabsorption [4, 6, 7].

In the following, we shall consider the photon energy

range characterized by η ≪ ω1 ≪ m. In works [4, 8],

the inelastic Compton scattering on heliumlike ions was

studied within the framework of nonrelativistic pertur-
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bation theory. The quantity of experimental interest is

the following cross-section ratio:

Rnl =
σ+∗

nl

σ+
=
Qnl

Z2
. (1)

Here σ+ = 2σT is the cross section of the ordinary

Compton scattering on heliumlike ions, where σT =

= (8/3)πr2e is the Thomson limit and re = α/m is

the classical radius of the electron. The cross section

σ+∗

nl describes the inelastic photon scattering on two-

electron atomic target, which causes ionization of one

K-shell electron and excitation of another one into the

nl state. The second equality in Eq. (1) is the univer-

sal scaling, which is obtained within the framework of

perturbation theory, taking into account the leading or-

ders with respect to small parameters 1/Z and αZ. The

dimensionless function Qnl does not depend on Z ex-

plicitly.

At high energies ω1 ≫ η, the dominant contribution

to the total cross section σ+∗

nl appears from the contact

(seagull) diagram, which describes the interelectron in-

teraction in the initial state (see Fig. 1). In this case,

Dominant diagram for ionization of two-electron atom

with excitation of the nl state by high-energy photon scat-

tering
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ratio (1) can be cast into the following form [4]:

Rnl = (4πα)2
(

− ∂

∂E

) l
∑

m′=−l

〈φm′

nl |G(E)|φm′

nl 〉, (2)

〈φm′

nl | = N2
1s

∂2

∂ν1∂ν2

∫

df

(2π)3
〈ψm′

nl |Viν1 |f〉
1

f2
〈−f|Viν2 ,

(3)

where N2
1s = η3/π. The energy of the nonrelativis-

tic Coulomb Green’s function G(E) is given by E =

= 2E1s−Enl = −I(2−n−2). In Eq. (3), the derivatives

over ν1 and ν2 are evaluated at the point ν1 = ν2 = η.

The atomic electrons exchange with each other by the

momentum f, which has the characteristic scale of the

order f ∼ η. The matrix element

〈f ′|Viλ|f〉 =
4π

(f ′ − f)2 + λ2
(4)

is the Fourier transform from the Yukawa potential

e−λr/r.

In work [4], in order to calculate the cross-section

ratio Rnl, the Coulomb Green’s function was approxi-

mated by three terms of the Sturm expansion. We shall

evaluate Eqs. (2) and (3) exactly.

Let us consider first the excitations into the ns states

(l = 0). In the momentum representation, the electron

Coulomb wave function ψns reads

〈ψns|f〉 = NnsDν

(

− ∂

∂ν

)

〈0|Viν |f〉, (5)

Dν =

n−1
∑

k=0

(n− 1)!(2ηn)
k

(n− k − 1)!k!(k + 1)!

∂k

∂νk
, (6)

where N2
ns = η3n/π and ηn = η/n. After taking deriva-

tives over ν, one should set ν = ηn.

By virtue of Eq. (5) and the operator identity

− ∂

∂ν
ViνViλ = − ∂

∂ν
ViλViν = Vi(ν+λ), (7)

one can write

〈ψns|Viν1 |f〉 = NnsDν〈0|Vi(ν+ν1)|f〉. (8)

Substituting Eq. (8) into Eq. (3) and using the identity

f−2〈f|Viµ|0〉 = µ−2〈f|(V0 − Viµ)|0〉, (9)

we obtain

〈φns| = N2
1sNnsΓµ〈0|Viζ , (10)

Γµ = Dµ

∂

∂µ

1

µ2
, (11)

where ζ = η + µ. In Eq. (10), the derivatives over µ

are evaluated at the point µ = η + ηn. The differential

operator Γµ possesses by the following property: acting

on the function, which does not depend on µ, it results

in zero after setting µ = η+ ηn. This property has been

used in derivation of Eq. (10).

Due to relation (10), formula (2) reads

Rns = (4πα)2N4
1sN

2
ns

m

p

∂

∂p
Γµ1

Γµ2
〈0|Viζ2G(p′)Viζ1 |0〉,

(12)

where p′ =
√
2mE + i0 = ip, ζk = η+µk (k = 1, 2). Af-

ter taking derivative over the momentum p, one should

set p = η
√
2− n−2.

In Eq. (12), the matrix element with the Coulomb

Green’s function can be evaluated analytically [9, 10]

〈0|Viζ2G(p′)Viζ1 |0〉 = 16πm
ip′

a2+

∫ ∞

1

tiξdt

(t− a)2
=

= − 24πmp

a2+(1− γ)
2F1(2, 1− γ; 2− γ; a), (13)

where a = a−/a+, a± = (p± ζ1)(p± ζ2), γ = iξ = η/p,

and 2F1 is the hypergeometric function.

In order to get the universal scaling, it is convenient

to introduce the dimensionless quantities, calibrating all

momenta involved into the problem in the units of η.

Then the ratio Rns takes the form (1) with the function

Qns =
28

n3

1√
2− n−2

(

− ∂

∂p

)

pΓµ1
Γµ2

×

× 2F1(2, 1− γ; 2− γ; a)

(1 − γ)a2+
. (14)

Here after evaluation of derivatives, one should set

µ1 = µ2 = 1 + n−1 and p =
√
2− n−2. The variable

γ becomes to be equal to γ = 1/p, while ζk = 1 + µk

(k = 1, 2). The differential operators Γµ1
and Γµ2

are

defined by formulas (6) and (11), where ηn = 1/n.

Now we shall evaluate the contribution due to the

excitations of the np states (l = 1). In this case, the

electron Coulomb wave function can be represented in

the form

〈ψm′

np |f〉 = Nnp (em′ · ∇k)Dλ

(

− ∂

∂λ

)

〈k|Viλ|f〉, (15)

Dλ =
η−2

(n− 2)!

∂n−2

∂λn−2
(λ+ ηn)

n+1, (16)

N2
np =

3

24π

η3n
(1− n−2)

, (17)

where ∇k = ∂/∂k and em′ (m′ = ±1, 0) are the polari-

zation vectors, which satisfy to the normalization con-

dition (em′ · e∗m′) = 1. After taking the derivatives with
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respect to λ and the gradient ∇k, one should set λ = ηn
and tend the variable k to zero.

The integration over the momentum f in (3) is per-

formed by using the following relation [11]

∫

df

(2π)3
〈k|Vi(λ+ν)|f〉

1

f2
〈−f|Viµ =

=
1

2

∫ 1

0

dz

Ω
〈−kz|ViL, (18)

where Ω =
√

(λ+ ν)2z + k2z(1− z) and L = Ω+ µ.

Inserting (15) into (3) and taking into account for-

mula (18) yield

〈φm′

np | = N2
1sNnp

∂2

∂ν∂µ
Dλ (em′ · ∇k)×

×
∫ 1

0

dx
x

Ω
〈−kx2|ViL. (19)

In the integral, we have changed the variable by z = x2.

The derivatives over ν and µ are evaluated at the point

ν = µ = η.

By virtue of Eqs. (2) and (19), one arrives at the

following expression:

(em′ · ∇k) (e
∗

m′ · ∇k′ ) 〈k′y2|ViL2
G(p′)ViL1

|kx2〉 =

= −27πm(xy)2p3

b4+(2 − γ)
2F1(4, 2− γ; 3− γ; b), (20)

where p′ = ip, p =
√

2m|E|, γ = η/p, b = b−/b+,

b± = (p±Λ1)(p±Λ2). Here, we used the integral repre-

sentation for the matrix element involving the Coulomb

Green’s function obtained in works [9, 10]. Formula

(20) is written taking into account the terms nonva-

nishing in the limit k → 0 and k′ → 0 only, so

that L1 = Ω1 + µ1 → Λ1 = (λ1 + ν1)x + µ1 and

L2 = Ω2 + µ2 → Λ2 = (λ2 + ν2)y + µ2.

Now we again express all momenta of the problem

in units of η = mαZ. Then the cross-section ratio Rnp

is reduced to the universal scaling (1), where the dimen-

sionless function Qnp is given by

Qnp =
28

n(n2 − 1)

1√
2− n−2

(

− ∂

∂p

)

p3Γλ1

ν1µ1
Γλ2

ν2µ2
×

×
∫ 1

0

dxx2
∫ x

0

dyy2
2F1(4, 2− γ; 3− γ; b)

(2− γ)b4+
. (21)

Here after evaluation of derivatives, one should set ν1 =

= ν2 = µ1 = µ2 = 1, λ1 = λ2 = 1/n, and p =
√
2− n−2.

The variable γ is just γ = 1/p. The differential operators

Γλ1

ν1µ1
and Γλ2

ν2µ2
are defined by the formula:

Γλ
νµ = 3Dλ

∂2

∂ν∂µ

1

(λ+ ν)
, (22)

where the operator Dλ is given by Eq. (16) with η = 1

and ηn = 1/n.

In Table, the results of our numerical calculations of

the functions Qnl are compared with those obtained in

work [4]. For transitions into the ns states, the agree-

ment between the exact and approximated values be-

comes significantly better with increase of the principal

quantum number n. In the case of the np excitations,

the disagreement amounts to about 12% and does not

diminish with increase of n.

To summarize, we have deduced the analytical for-

mulas for total cross sections of nonrelativistic high-

energy photon scattering, which causes ionization ac-

companied by simultaneous excitation of the nl states.

Expressions (14) and (21) are our main result. The

heliumlike ions characterized by the small parameters

1/Z ≪ 1 and αZ ≪ 1 are considered as a target. Due

to the universal scaling behavior, the results obtained

can be also employed for more complicated atomic sys-

tems, in particular, for stable multicharged ions with

more than two electrons [12].

The financial support from RFBR is acknowledged

(grant # 11-02-00943-a).

Numerical values of the function Qnl for the ns and np

states (top rows, from Ref. [4]; bottom rows, present
work)

n Qns Qnp

2 0.5884 · 10
−1

0.479 · 10
−2

0.5921 · 10−1 0.4271 · 10−2

3 0.1023 · 10
−1

0.115 · 10
−2

0.1035 · 10−1 0.1019 · 10−2

4 0.3656 · 10−2 0.451 · 10−3

0.3689 · 10
−2

0.3988 · 10
−3

5 0.1739 · 10−2 0.224 · 10−3

0.1751 · 10
−2

0.1974 · 10
−3
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