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The microscopic structure of topological defects on the SHe A — B interface is consid-
ered. An explicit description of certain class of such defects is presented. Nonequivalence
of positive and negative topological charges is demonstrated.

Recently a topological classification of the defects on the SHe A — B interface was
proposed!~% . Here we consider possible microscopic structure of some of the defects.
Characteristic for our solution is non vanishing and everywhere continuous distribution
of the order parameter. Seemingly, these properties are in a contradiction with the
topological character of the defects because, as it is well known, defects with nonszero
topological charges have a singular "hard” core. Irside the hard core region the order
parameter no longer belongs to the vacuum manifold of a given phase and may vanish.
However, we show that in some cases this singularity can be escaped via certain changing
of the shape of the interface involving creation of handles?).

The bulks of the A— and B—phases are described by distributions of the order param-
eter which has a form A4; = A 4d,(e1:+1¢3;) in the A—phase and AB, = Ap exp(s®) Ras
in the B—phase. As a boundary condition we require that the vector I'= &, x & in the
A—phase near the interface is parallel to it*5 . Also other constraints? should be added
in order to make the boundary condition complete. They specify for each value of the
order parameter A%, in the A—phase a set of permissible values of the order parame-
ter Af‘- in the B—phase on the opposite side of the interface and vice versa. In other
words, a pair (A4 AB.) satisfy the boundary condition if it can be obtained from the

as?) “Cat
pair (A%, AOF) where A%4 = A, 2,(%; — %), A%8 = Apéb,; by the action of some

at !

element of the symmetry group G = U{(1) x SO(2)L x SO(3)°. Here z is normal to the

1)As I was told by G.Volovik the first idea of such flaring-out of singularities into the shape of the
A — B interface belongs to E.Thuneberg.
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interface; U(1) is the gauge group; SO(2)% denotes the group of space rotations arourd
z; SO(3)% is the group of all spin rotations.

The result of the topological analysis is as follows (>®): a pointlike singularity of
the interface is characterized by a triplet (mg,my, mp) where ma, m; € Z are winding
numbers for the phase ® of the order parameter (both in the A— and B—phases) and
for the vector [ (in the A—phase); the index mp € Z, stands for disclinations in the field
of R—matrix in the B—phase. Here we study two types of defects (fig.1 a,b):

a) pointlike singularities localised on the interface (boojums) for which m; is even;
me = mg = 0.

b) singular lines (vorticies and disclinations) of the B—phase terminating in the point-
like defect of the interface; in this case mg + my is even.

A possible microscopic picture of the defects a), b) is presented in fig.1 c,d. The
A — B interface is bent to form a connected surface C separating the bulks of the A—
and B—phases. This changing of the shape of the interface can be energetically preferable
if there exists a continuous distribution of the order parameter in the bulks compatible
with the boundary conditions on C. Then one gets the structure which macroscopically
looks like the appropriate boojum or vortex but has no singularities in the microscopic
order parameter distribution.
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Fig. 1. Schematic illustration of (a)
boojums and (b) singular lines in the
B—phase terminating on the interface;
(c) microscopic structure in the case
with g = 2, (d) microscopic structure
in the case with g =1,
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We consider first the case a) (boojums). The boundary surface can be compa,c’t;lfied
at infinity, the A—phase bulk being in the interior of the compa.ctxfied sm}?ce. en
we get a compact 2-dimensional orientable manifold C homzeon.lorphlc toa ima.ngfan
surface of some genus g i. e. to the g-dimensional sphere 5% with g h.a.ndles. ccorhmg
to the boundary condition vectors | form a tangent field on C continuous everyw el:
except for the infinitly distant” point N added to the surface C t? make it ccfmpa;: :
¢ = CY{N} . Regarding this remark one faces the problem of finding obstructlonfs ;:r
the existence of such a field. The answer is known as Euler theorem: ’the sum o .tt‘e
indicies of all singular points of a tangent vector field equals 2 — 2g (Euler’s characteristic
of the Riemannian surface of genus g).

i i I i i — ts 2 —my = 2 —2g or
Since the index of the [—field in N is equal to 2 — my, one ge -
my = 2g . We conclude that for my < 0 such a structure cannot exist. We checked

in thi = iate surface C is a torus) there
t for m; = 2 (in this case g = 1 and the appropria x €
Z};;ts a con‘tinuoug distribution of all other components of the order parameter including
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€1,8,d, Ry;, ® and satisfying ail the boundary condition.Schematically it is presented
y i et |

in fig.2.
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Fig. 2. Schematic illustration of the order parameter distribution for the case m; =
2,9 = 1. The A—-phase fills the interior of the torus. Lines of the i-vector coinside with
the parallels of the torus (see section Cz2). Triads (?1,E'g,i) are uniform throughout a
given cross section (see e. g. triad {1,2,38) in the section C1); d—vectors on the surface
of the torus are perpendicular to it and form a continuous funnel-like structure in the
interior (section Cs). The matrix R,; in the B-phase is §,;. Surfaces of a constant
phase ® of the B—phase look like closed domes leaning on the parallels of the torus. The
disk bourided by the shortest parallel corresponds to & = x. The horisontal plane surface
corresponds to $ = 0, 2x.
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Fig. 3. Lines of {~vector on the surface of the funnel in the cases my = +1 (left)
and m; = —1 (right). For the former we get Is = 1 which allows for a uniform dis-
tribution of I near S while for the latter Is = --1 and thus a texture of ! near §

arises inavoidably.

For larger my one can construct similar distributions. They contain pointlike singular-
ities in the A—phase (hedgehogs of the d—vector distribution). Their total topological
chargeis 1 — g.

Let us consider now the case b) of vortex lines terminating on the interface. In order
to compactify the surface C one has to add the point N and also_.to glue ”the neck of
the funnel” by 2 point 5. Then the previous considerations of the I—vector distribution
applies and we find the index of the I—field in S to be Is_‘= m; — 2g. One can notice that
only Is = 1 allows for a space-uniform digtribution of I near S. Any other Is involves
a texture with large (VI}2 in the vortex core. (Because for m; = +1 one can take g = 0
and get Is = 1 which is impossible for m; = —1, see fig.3.) This observation implies that
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the vorticies with m; = +1 and m; = —1 are not equivalent with respect to their ability
to penetrate the B—phase.

In conclusion I mention that as I was told by G.Volovik it is possible that just this
inequivalence between different ends of the B—phase quantised vorticies is manifested in
Helsinky NMR experiments on the phase boundary under rotation.

I am grateful to G.Volovik for stimulating discussions and communications.
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