Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 100 (2014) | ISSUE 8 | PAGE 591
Allowable number of plasmons in nanoparticle
Abstract
We address thermal and strength phenomena occurring in metal nanoparticles due to excitation of surface plasmons. The temperature of the nanoparticle is found as a function of the plasmon population, allowing for the Kapitza heat boundary resistance and temperature dependencies of the host dielectric heat conductivity and the metal electrical conductivity. The latter is shown to result in the positive thermal feedback which leads to appearance of the maximum possible number of plasmon quanta in the steady-state regime. In the pulsed regime the number of plasmon quanta is shown to be restricted from above also by the ponderomotive forces, which tend to deform the nanoparticle. Obtained results provide instruments for the heat and strength management in the plasmonic engineering.