Применение теории случайных матриц к описанию колебаний в гранулярных средах

Я.М.Бельтюков¹⁾

Физико-технический институт им. Иоффе РАН, 194021 С.-Петербург, Россия

Поступила в редакцию 16 января 2015 г.

Показано, что динамическая матрица M, описывающая гармонические колебания в гранулярных средах может быть представлена в виде $M = AA^{T}$, где строки матрицы A соответствуют степеням свободы отдельных гранул, а столбцы – упругим контактам между гранулами. Такое представление динамической матрицы позволяет оценить плотность колебательных состояний с помощью теории случайных матриц. Полученная плотность колебательных состояний примерно постоянна в широком диапазоне частот $\omega_{-} < \omega < \omega_{+}$, который определяется отношением числа степеней свободы к суммарному числу контактов в системе, что находится в хорошем согласии с результатами численных экспериментов.

DOI: 10.7868/S0370274X15050124

Гранулярные среды повсеместно встречаются в природе, в промышленности и в повседневной жизни. Это различные эмульсии (микроскопические капли одной жидкости в другой несмешивающейся жидкости), коллоидные суспензии (твердые частицы в жидкости), пены и сыпучие среды, такие, как песок. Гранулярные среды демонстрируют богатый спектр явлений, который до сих пор остается малоизученным. Например, в зависимости от внешних факторов гранулярные среды могут течь наподобие жидкости или проявлять упругие свойства, как твердое тело.

Переход между твердой фазой, когда все гранулы касаются друг друга, и фазой свободных частиц в англоязычной литературе получил название jamming transition (от англ. traffic jam – пробка на дороге). Такой переход описывается простой моделью, когда рассматриваются N упругих гранул, заключенных в некоторый объем [1]. В этой модели самым важным параметром является отношение ϕ занимаемого гранулами объема ко всему доступному объему. Если ϕ велико и превышает некоторое критическое значение ϕ_c , то все гранулы касаются друг друга и все вместе образуют подобие твердого тела, чья структура может выдерживать конечные внешние нагрузки (рис. 1). Для того чтобы система не кристаллизовалась, берется смесь гранул немного разного размера. Если же $\phi < \phi_c$, то гранулы перестают касаться друг друга и система ведет себя подобно газу. При $\phi = \phi_c$ все гранулы касаются друг друга, но взаимодействие между ними отсутствует. В этой работе мы покажем, как теория случайных матриц позволяет

Рис. 1. Состояния гранулярной среды. (а) – Свободные частицы, $\phi < \phi_c$. (b) – Критическое состояние, $\phi = \phi_c$. (c) – Твердая фаза, $\phi > \phi_c$ [2]

описать плотность колебательных состояний в твердой фазе, когда ϕ близко к критическому значению ϕ_c , но немного превосходит его.

Наибольший интерес представляет случай, когда гранулы являются сферическими и трение между ними отсутствует. Несмотря на кажущуюся простоту, этой модели достаточно для качественного описания перехода между фазой свободных частиц и твердой фазой. Математически такая модель описывается отталкивающим потенциалом между каждой парой касающихся друг друга гранул [1]:

$$U(r_{ij}) \propto (1 - r_{ij}/\sigma_{ij})^{\gamma}, \quad r_{ij} < \sigma_{ij}, U(r_{ij}) = 0, \quad r_{ij} > \sigma_{ij}.$$
(1)

Здесь r_{ij} – расстояние между центрами гранул *i* и *j*, а σ_{ij} – сумма радиусов этих гранул. Показатель степени γ зависит от типа взаимодействия между гранулами. Часто рассматривают гармонический потенциал ($\gamma = 2$) или потенциал Герца ($\gamma = 5/2$), который соответствует взаимодействию трехмерных упругих шаров. Поскольку мы рассматриваем сферические

¹⁾e-mail: ybeltukov@gmail.com

гранулы без трения, вращательные степени свободы отдельных гранул роли не играют.

Введем параметр z – среднее координационное число, т.е. среднее число контактов каждой гранулы с соседними гранулами. Чем больше концентрация гранул ϕ , тем с большим числом своих соседей взаимодействует каждая гранула. В точке перехода $\phi = \phi_c$ среднее число контактов определяется универсальной формулой: $z_c = 2d$, где d – размерность пространства, что связано с правилом подсчета связей Максвелла [2, 3].

При уменьшении среднего числа контактов z до критического значения 2d различные характеристики системы ведут себя степенным образом. Например, объемный модуль G и модуль сдвига B ведут себя как [2]

$$G \sim (z - z_c)^{2\gamma - 3}, \quad B \sim (z - z_c)^{2\gamma - 4}.$$
 (2)

Нас же будет интересовать поведение плотности колебательных состояний $g(\omega)$ в зависимости от частоты ω . Численное моделирование показывает, что можно выделить два характерных участка частот: примерно постоянная плотность колебательных состояний в интервале $\omega_{-} < \omega < \omega_{+}$ и относительно небольшое число колебаний (или щель в спектре) при $0 < \omega < \omega_{-}$. Чем ближе z к критическому значению 2d, тем ближе ω_{-} к 0. При критическом значении z = 2d плотность колебательных состояний $g(\omega)$ примерно постоянна, начиная с нулевых частот. Простое теоретическое объяснение такого поведения плотности состояний вблизи порога устойчивости до сих пор отсутствует. Мы покажем, что теория случайных матриц может дать адекватную оценку плотности колебательных состояний в критической области.

Рассмотрим случай системы, близкой к критической, когда $z > z_c$ ($\phi > \phi_c$). В этом случае гранулы касаются соседних гранул, но вдавлены друг в друга незначительно. Тогда вблизи устойчивого положения равновесия суммарная потенциальная энергия раскладывается как [4]

$$U(\mathbf{u}_1,\ldots,\mathbf{u}_N) = \sum_{(ij)} \frac{k_{ij}}{2} \left[(\mathbf{u}_i - \mathbf{u}_j) \cdot \mathbf{n}_{ij} \right]^2.$$
(3)

Здесь \mathbf{u}_i – смещение гранулы *i* от положения равновесия $\mathbf{r}_i^{(0)}$, значок "(*ij*)" под знаком суммы обозначает суммирование только по касающимся парам гранул *i* и *j*, \mathbf{n}_{ij} – единичный вектор вдоль направления, соединяющего центры гранул, $\mathbf{r}_i^{(0)} - \mathbf{r}_j^{(0)}$. За счет рассматриваемого отталкивающего потенциала все $k_{ij} > 0$. Для определенности мы будем считать, что общее число пар касающихся гранул равно K = zN/2. Приведенные выше формулы верны для любой размерности пространства d.

Динамическая матрица *M* определяется через вторые производные от потенциальной энергии системы в положении равновесия:

$$M_{i\alpha,j\beta} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 U}{\partial u_{i\alpha} \partial u_{j\beta}},\tag{4}$$

где α и β означают проекции смещений гранул на декартовы координаты. Динамическая матрица имеет размер $N_f \times N_f$, где $N_f = Nd$ – число степеней свободы. При этом собственные числа динамической матрицы – это квадраты собственных частот рассматриваемой механической системы. Среди собственных частот имеются и тривиальные нулевые частоты, соответствующие поступательному и вращательному движению системы как целого.

Прежде чем рассмотреть общий случай взаимодействия многих частиц, рассмотрим наглядные случаи взаимодействия двух и трех частиц между собой без участия остальных частиц (рис. 2). Для двух час-

Рис. 2. Иллюстрация взаимодействия двух и трех частиц между собой

тиц (рис. 2a) потенциальная энергия выглядит как единственное слагаемое в формуле (3):

$$U(\mathbf{u}_1, \mathbf{u}_2) = \frac{k}{2} \left[(\mathbf{u}_1 - \mathbf{u}_2) \cdot \mathbf{n} \right]^2.$$
 (5)

Именно такой энергией взаимодействия обладают две частицы, соединенные пружинкой с продольной жесткостью k. Соответствующую динамическую матрицу M ($2d \times 2d$) можно записать в блочном виде:

$$M = \begin{pmatrix} k\hat{n}/m_1 & -k\hat{n}/\sqrt{m_1m_2} \\ -k\hat{n}/\sqrt{m_1m_2} & k\hat{n}/m_2 \end{pmatrix}, \quad (6)$$

где через \hat{n} обозначена матрица $d \times d$ с элементами $\hat{n}_{\alpha\beta} = n_{\alpha}n_{\beta}$. Заметим, что такую динамическую матрицу можно представить в виде $M = AA^{\mathrm{T}}$, если в качестве матрицы A взять матрицу $2d \times 1$:

$$A = \begin{pmatrix} \sqrt{k/m_1}\mathbf{n} \\ -\sqrt{k/m_2}\mathbf{n} \end{pmatrix}.$$
 (7)

Письма в ЖЭТФ том 101 вып. 5-6 2015

Элементы матрицы A имеют размерность частоты и по своему значению соответствуют колебанию масс m_1 и m_2 на пружинке с жесткостью k.

Для трех частиц, первая из которых касается второй, а вторая – третьей (рис. 2b), динамическая матрица $3d \times 3d$ имеет вид

$$M = \begin{pmatrix} \frac{k_{12}\hat{n}_{12}}{m_1} & \frac{-k_{12}\hat{n}_{12}}{\sqrt{m_1m_2}} & 0\\ \frac{-k_{12}\hat{n}_{12}}{\sqrt{m_1m_2}} & \frac{k_{12}\hat{n}_{12} + k_{23}\hat{n}_{23}}{m_2} & \frac{-k_{23}\hat{n}_{23}}{\sqrt{m_2m_3}}\\ 0 & \frac{-k_{23}\hat{n}_{23}}{\sqrt{m_2m_3}} & \frac{k_{23}\hat{n}_{23}}{m_3} \end{pmatrix}.$$
(8)

Такая динамическая матрица также представляется в виде $M = AA^{T}$, только теперь матрица A имеет 2 столбца в соответствии с двумя контактами и 3dстрок в соответствии с 3d степенями свободы, присутствующими в системе:

$$A = \begin{pmatrix} \sqrt{k_{12}/m_1} \mathbf{n}_{12} & 0\\ -\sqrt{k_{12}/m_2} \mathbf{n}_{12} & \sqrt{k_{23}/m_2} \mathbf{n}_{23}\\ 0 & -\sqrt{k_{23}/m_3} \mathbf{n}_{23} \end{pmatrix}.$$
 (9)

Расстановка знаков "минус" имеет произвольный характер: каждый столбец матрицы A можно домножить на -1 без изменения динамической матрицы M.

В общем случае большого числа взаимодействующих гранул элементы динамической матрицы *М* имеют вид

$$M_{i\alpha,j\beta} = -\frac{k_{ij}n_{ij}^{\alpha}n_{ij}^{\beta}}{\sqrt{m_i m_j}}, \quad i \neq j,$$
(10)

$$M_{i\alpha,i\beta} = \sum_{j \neq i} M_{i\alpha,j\beta}.$$
 (11)

Действуя по аналогии с приведенными выше примерами, ее можно представить в виде $M = AA^{\rm T}$, где A – прямоугольная матрица $N_f \times K$. Здесь, как и раньше, $N_f = Nd$ – число степеней свободы, а K = zN/2 – суммарное число пар взаимодействующих гранул. Элементы матрицы A имеют вид

$$A_{i\alpha,p} = \sqrt{\frac{k_p}{m_i}} n_{p\alpha} (\delta_{p_1 i} - \delta_{p_2 i}), \qquad (12)$$

где индекс "p" нумерует пары касающихся гранул, а через p_1 и p_2 обозначены номера гранул, входящих в пару под номером p. В результате каждой строчке матрицы A соответствует некоторая степень свободы, а каждому столбцу – некоторая пара взаимодействующих гранул. Кроме того, запись $AA^{\rm T}$ гарантирует устойчивость механической системы, т.к. матрица $M = AA^{\mathrm{T}}$ всегда является положительно определенной для любой прямоугольной вещественной матрицы A [5].

Заметим, что собственные числа динамической матрицы M не изменяются при домножении матрицы A слева и справа на произвольные ортогональные матрицы U и V. Иными словами, матрица $\tilde{M} = \tilde{A}\tilde{A}^{\mathrm{T}}$ имеет те же самые собственные числа, что и матрица $M = AA^{\mathrm{T}}$, если $\tilde{A} = UAV$. Ортогональные матрицы U и V имеют размеры $N_f \times N_f$ и $K \times K$ соответственно. Для произвольных (т.е. случайных) ортогональных матриц U и V

$$\langle U_{ij} \rangle = \langle V_{ij} \rangle = 0, \qquad (13)$$

$$\langle U_{ij_1}U_{ij_2}\rangle = \langle U_{j_1i}U_{j_2i}\rangle = \delta_{j_1j_2}\frac{1}{N_f},\tag{14}$$

$$\langle V_{ij_1}V_{ij_2}\rangle = \langle V_{j_1i}V_{j_2i}\rangle = \delta_{j_1j_2}\frac{1}{K},\tag{15}$$

поскольку отдельно взятые столбец или строчка случайной ортогональной матрицы есть случайно ориентированный единичный вектор. Следовательно, элементы матрицы \tilde{A} обладают простыми свойствами:

$$\langle \tilde{A}_{ij} \rangle = 0, \quad \langle \tilde{A}_{ij}^2 \rangle = \frac{1}{N_f K} \sum_{kl} A_{kl}^2.$$
 (16)

Таким образом, все элементы матрицы \tilde{A} , вообще говоря, являются ненулевыми и имеют одинаковую дисперсию в отличие от сильно разреженной матрицы A, которая определяется взаимодействием только ближайших гранул. При этом, по определению, матрицы $M = AA^{\rm T}$ и $\tilde{M} = \tilde{A}\tilde{A}^{\rm T}$ имеют одинаковый набор собственных значений. Отметим, что элементы матрицы \tilde{A} обладают некоторыми корреляциями. Однако для простоты и универсальности оценки распределения собственных чисел мы этими корреляциями ями пренебрежем.

Таким образом, ниже мы будем считать, что матрица \tilde{A} – прямоугольная случайная матрица $N_f \times K$ с не зависящими друг от друга элементами, обладающими свойствами

$$\langle \tilde{A}_{ij} \rangle = 0, \quad \langle \tilde{A}_{ij}^2 \rangle = \frac{\omega_0^2}{N_f}.$$
 (17)

Здесь частота ω_0 является характерной частотой колебаний касающихся частиц. Она определяется из уравнений (12) и (16):

$$\omega_0^2 = \frac{1}{K} \sum_{(ij)} k_{ij} \left(\frac{1}{m_i} + \frac{1}{m_j} \right).$$
(18)

Тогда $\tilde{M}=\tilde{A}\tilde{A}^{\rm T}$ с такой случайной матрице
й \tilde{A} представляет собой так называемый ансамбль Вишарта в

Письма в ЖЭТФ том 101 вып. 5-6 2015

(19)

теории случайных матриц. Соответствующая плотность колебательных состояний описывается распределением Марченко–Пастура [6]:

 $g(\omega) = \frac{1}{\pi \omega_0^2 \omega} \sqrt{(\omega_+^2 - \omega^2)(\omega^2 - \omega_-^2)},$

где

$$\omega_{\pm} = \omega_0 \left| \sqrt{\frac{K}{N_f}} \pm 1 \right|, \quad \frac{K}{N_f} = \frac{z}{2d}.$$
 (20)

Видно, что значение z = 2d является особенным: в этом случае число степеней свободы N_f сравнивается с числом касающихся пар K, матрица A становится квадратной, а плотность колебательных состояний принимает вид четверти окружности. Для значений z > 2d появляется щель в плотности колебательных состояний в диапазоне частот $0 < \omega < \omega_-$. При этом вблизи критического значения 2d

$$\omega_{-} \approx \omega_{0} \frac{|z - 2d|}{4d}, \quad \omega_{+} \approx 2\omega_{0}.$$
 (21)

Однако здесь стоит заметить, что случай z < 2d в рассматриваемой модели с упругими шарами не реализуется, т.к. при z < 2d система полностью распадается на невзаимодействующие гранулы и среднее координационное число z = 0.

На рис. 3 приведено сравнение плотности колебательных состояний, полученной численно в рабо-

Рис. 3. Плотность колебательных состояний для 1024 сфер с отталкивающим потенциалом с $\gamma = 2$ для разных плотностей заполнения ϕ . Сплошные линии – предсказание теории случайных матриц, штриховые – численные данные работы [4]

те [4] для упругих сфер с отталкивающим потенциалом с $\gamma = 2$, и оценки по формуле (19). Для пересчета плотности заполнения ϕ в среднее координационное число z использовалось соотношение z - 2d = $= 7.5\sqrt{\phi - \phi_c}$, которое с хорошей точностью выполняется в исследуемом диапазоне значений $\phi - \phi_c$ [2]. Заметим, что характерная частота ω_0 тоже может зависеть от разности z - 2d. Действительно, характерное значение взаимного проникновения частиц δ пропорционально $\phi - \phi_c$. Поэтому характерная жесткость связей, определяемая через вторую производную потенциала (1), $k \propto \delta^{\gamma-2} \propto (\phi - \phi_c)^{\gamma-2} \propto (z - 2d)^{2\gamma-4}$. Таким образом, характерная частота $\omega_0^2 = k/m \propto (z - 2d)^{2\gamma-4}$. Однако для случая $\gamma = 2$ частота ω_0 остается постоянной и для сравнения с численным экспериментом использовалось значение $\omega_0 = 1.71$ (в тех же единицах, что и в численном расчете).

Рассмотренный нами подход, основанный на теории случайных матриц, правильно предсказывает примерно постоянную плотность колебательных состояний от $\omega_{-} \sim z - 2d$ вплоть до максимальных частот в системе и практически полное отсутствие колебательных мод при $\omega < \omega_{-}$. В реальной системе при $\omega < \omega_{-}$ вместо строгой щели имеется некоторое количество колебательных состояний. Дело в том, что в рассмотренном выше подходе мы не учли наличие акустических фононов. Однако, как видно из численного эксперимента, количество акустических фононов быстро падает при приближении z к критическому значению 2d. Акустические фононы в щели были исследованы в работе [7]. Заметим, что значение $\omega_0 = 1.71$ являлось единственным подгоночным параметром (единым для всех кривых). Оно одновременно дает правильное положение частот ω_{-} и примерно постоянную плотность состояний $g(\omega) \approx 2/\pi\omega_0 = 0.37$ в диапазоне $\omega_- < \omega < \omega_+$.

В заключение отметим, что, строго говоря, формула (3) не является точной. Более точная формула имеет вид

$$U(\mathbf{u}_1, \dots, \mathbf{u}_N) =$$

$$= \sum_{(ij)} \left\{ \frac{k_{ij}}{2} \left[(\mathbf{u}_i - \mathbf{u}_j) \cdot \mathbf{n}_{ij} \right]^2 + \frac{e_{ij}}{2} \left[(\mathbf{u}_i - \mathbf{u}_j)^{\perp} \right]^2 \right\}, (22)$$

где $(\mathbf{u}_i - \mathbf{u}_j)^{\perp}$ обозначает проекцию разницы смещений $\mathbf{u}_i - \mathbf{u}_j$ на плоскость, перпендикулярную вектору \mathbf{n}_{ij} . Для рассматриваемого отталкивающего потенциала $k_{ij} > 0$ и $e_{ij} < 0$. Таким образом, k_{ij} и e_{ij} дают стабилизирующий и дестабилизирующий вклады в потенциальную энергию соответственно. Дестабилизирующая составляющая играет заметную роль при определении положения равновесия, но в самом положении равновесия отношение $|e_{ij}/k_{ij}|$ пропорционально взаимному проникновению частиц δ . При $z = z_c$ оно равно 0, а при $z > z_c$ вносит несущественное изменение в плотность колебательных со-

Письма в ЖЭТФ том 101 вып. 5-6 2015

стояний, приводящее к небольшому размытию ступеньки в плотности состояний при $\omega \approx \omega_{-}$ [4].

Итак, мы показали, что взаимодействие упругих гранул в гранулярной системе описывается динамической матрицей $M = AA^{\mathrm{T}}$. Каждой строке матрицы А соответствует некоторая степень свободы, а столбцу – упругое взаимодействие некоторой пары соседних гранул. Представление динамической матрицы в виде $M = AA^{\mathrm{T}}$ и случайное ортогональное преобразование позволяют для качественного описания плотности колебательных состояний использовать ансамбль Вишарта. При этом единственным существенным параметром является отношение полного числа контактов К к полному числу степеней свободы N_f . Характерная частота ω_0 задает лишь масштаб всех частот и тривиальным образом входит во все формулы. Если полное число контактов К отличается от полного числа степеней свободы N_f , то в плотности колебательных состояний имеется щель, ширина которой пропорциональна $K - N_f$. В действительности эта щель в колебательном спектре не является строгой и в ней имеется небольшое количество фононов (см. работу [7], где такая мягкая щель была названа фононной). При $K = N_f$ щель закрывается и плотность колебательных состояний примерно постоянна, начиная с нулевых частот. Результаты данной работы хорошо согласуются с результатами теоретических расчетов, выполненных с помощью метода эффективной среды [8].

Автор выражает благодарность Д.А. Паршину за помощь в подготовке статьи и фонду Династия за финансовую поддержку.

- 1. A. J. Liu and S. R. Nagel, Nature 396, 21 (1998).
- C. S. O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306 (2003).
- 3. J.C. Maxwell, Philos. Mag. 27, 294 (1864).
- M. Wyart, L. E. Silbert, S. R. Nagel, and Th. A. Witten, Phys. Rev. E 72, 051306 (2005).
- R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton (2007), 264 c.
- В. А. Марченко, Л. А. Пастур, Математический сборник 72(114), 507 (1967).
- Y. M. Beltukov, V. I. Kozub, and D. A. Parshin, Phys. Rev. B 87, 134203 (2013).
- 8. M. Wyart, Europhys. Lett. 89, 64001 (2010).