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On the defect and stability of differential expansion
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Empirical analysis of many colored knot polynomials, made possible by recent computational advances in

Chern–Simons theory, reveals their stability: for any given negative N and any given knot the set of coefficients

of the polynomial in r-th symmetric representation does not change with r, if it is large enough. This fact

reflects the non-trivial and previously unknown properties of the differential expansion, and it turns out that

from this point of view there are universality classes of knots, characterized by a single integer, which we call

defect, and which is in fact related to the power of Alexander polynomial.
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HOMFLY polynomials are Wilson-loop averages in

3d Chern–Simons theory [1], which in this simplest

model depend only on the topology of the Wilson line

(knot). Therefore one can separate and study the group-

theory properties of observables – and this is a non-

trivial and very interesting problem, for a brief sum-

mary of results see [2]. From the quantum field theory

perspective knot polynomials are direct generalization

of conformal blocks, and this relation [3] provides one

of the effective calculational methods in knot theory.

Recent advances in [4, 5], based on the previous con-

siderations in [3–15], provided a way to systematically

calculate simplest colored HOMFLY polynomials [16]

for a really wide variety of knots – including, in partic-

ular, the entire Rolfsen table of [17]. This allows us to

return to the study of “differential expansions” of [18–

27], which was temporarily postponed because of the

insufficient “experimental” material.

In this note we describe empirically obtained prop-

erties of these expansions for symmetric representations

[r] (where r is the length of the single-line Young di-

agram). It looks like there are different universality

classes of such expansions, characterized by a single in-

teger, which we call “defect” δK. Moreover, these newly

observed properties allow to identify 2(δK +1) with the

power of Alexander polynomial and lead to a peculiar

stability property of symmetrically colored HOMFLY

for large enough r: what stabilizes is not the polyno-

mial itself, but the set of its coefficients – i.e. something
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like the “coordinates” gr,j, introduced in [24]. Theoreti-

cal analysis of these observations, proofs and extension

to non-(anti)symmetric representations are beyond the

scope of the present text.

1. The notion of defect. Differential expansion pro-

vides a knot-dependent q-deformation (quantization) of

the remarkable factorization property [9, 11, 19–21] of

colored “special” polynomials at q = 1,

HK
R (A) =

(

HK
[1](A)

)|R|
∣

∣

∣

∣

q=1

∀

∀ representation R and knot K (1)

which fully defines their dependence on representation

(Young diagram) R. Currently these expansions can be

well studied only for symmetrically-colored HOMFLY,

and we focus on this case in the present paper.

The story starts from the fact that

• Hr = H[r] always possesses differential expansion

of the following form:

HK
r (A, q2) = 1 +

+
r

∑

s=1

[r]!

[s]![r − s]!
GK

s (A, q){A/q}
s−1
∏

j=0

{Aqr+j}. (2)

For generic knot GK
s is a non-factorizable Laurent poly-

nomial of A and q, but for some knots it can be fur-

ther factorized. In this formula we use the notation

{x} = x − x−1 and quantum number is defined as

[n] = {qn}/{q};

• what is important, if GK
s is divisible by some “dif-

ferential” {Aqk}, the same is true for all other GK
s′ with
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s′ > s. This property allows one to introduce defect

functions νKs and µK
s = s− 1− νKs :

GK
s (A, q) = FK

s (A, q)

νK

s
−1

∏

j=0

{Aqj} =

= FK
s (A, q)

s−2−µK

s
∏

j=0

{Aqj} (3)

which are both(!) monotonically increasing function

of s,

νKs ≤ νKs′ , µK
s ≤ µK

s′ for s < s′, (4)

i.e. both grow – but not faster than s;

• for A = qN with any fixed N , positive or negative,

Fs(q
N , q) ∼ {q}µ

K

s ⇐⇒ Gs(q
N , q) ∼ {q}s−1, (5)

i.e. at fixed N the s-the term of differential expansion

is actually of the order {q}2s;

• it turns out that νKs as a function of s has a very

special shape, fully parameterized by a single integer

δK ≥ −1, which we call the defect of differential expan-

sion:

defect δK = −1 =⇒ µK
s = s− 2, νKs = 1, (6)

defect δK = 0 =⇒ µK
s = 0, νKs = s− 1, (7)

defect δK = 1 =⇒ µK
s ∼

s

2
, νKs = entier

(

s− 1

2

)

, (8)

defect δK = 2 =⇒ µK
s ∼

2s

3
, νKs = entier

(

s− 1

3

)

, (9)

defect δK = 3 =⇒ µK
s ∼

3s

4
, νKs = entier

(

s− 1

4

)

, (10)

. . .

In general

νKs = entier

(

s− 1

δK + 1

)

∼
s

δK + 1
,

µK
s = s− 1− νKs ∼

δK

δK + 1
s.

(11)

2. Relation to Alexander polynomial. It is an

interesting question, if the value of δK can also restrict

the coefficient functions FK
s (A, q).

Immediately observable are two remarkable proper-

ties of this kind:

• GK
1 (A, q) has power 2δK in q2, i.e. GK

1 (A, q) =

=
δK
∑

j=−δK
cjq

2j ;

For example, δK = 0 whenever GK
1 is independent of q;

• Alexander polynomial has power 2(δK + 1) in q2,

i.e. AlK(q) = HK
1 (A = 1, q) =

δK+1
∑

j=−δK−1

ajq
2j ,

δK =
1

2
Powerq2(Al

K)− 1. (12)

For δK 6= 0 these facts are not immediately related:

contributing to Alexander polynomials are all GK
s with

s ≤ δK + 1 and they can and do contain much higher

powers in q. Moreover, even the product of differentials

in the s-term has power in q, which grows quadratically

with s – and thus with δK. This means that there are

serious cancelations behind the linear law (12).

Since Alexander polynomials are easily available al-

ready from [17], the values of µ, ν for each knot are easily

obtained from this data.

3. Twist and torus knots. For all twist knots the

defect is vanishing

δtwist = 0. (13)

Instead for torus knots it is a kind of maximal:

for the 2-strand family δ[2,n] =
n− 3

2
,

for the 3-strand family

(819, 10124, . . .) δ[3,n] = n− 2,

for the 4-strand family δ[4,n] =
3n− 5

2
,

. . . ,

in general, δ[m,n] =
mn−m− n− 1

2
,

(14)

since the power of Alexander polynomial Al[m,n] is

(m− 1)(n− 1).

4. Negative defect: KTC mutants and their

relatives. Starting from 11 intersections there are cases

when Alexander is just unity, i.e. the defect is negative,

δK = −1. According to our general rules this means that

for such knots already GK
1 is reducible: GK

1 ∼ {A}. Of

course, also all other GK
s ∼ {A}, because all the terms

of the differential expansion are vanishing for A = 1.

This is indeed true for the first example – the cel-

ebrated Kinoshita–Terasaka and Conway (KTC) mu-

tants K = 11n42 & 11n34, reconsidered recently in [5],

– and also for the next example, available from [17]:

K = 12n313 & 12n430. Moreover, the combination of
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[4] and [5] allows to calculate HOMFLY for KTC mu-

tants for any symmetric representation and validate (6)

in this particular example.

5. Summary: stability and other properties of

differential expansion. Take any randomly chosen

knot (say, K = 62).

It is easy to observe that, starting from H62
4 , the sets

of coefficients are the same – despite the polynomials

are different. At A = q−2 the same happens, beginning

from H62
8 . Thus what stabilizes are not the polynomi-

als themselves, but something else, more appropriately

associated with the knots. In full accordance with the

vision in [24] this something are the coefficient functions

GK
s of the differential expansion.

Due to their properties, which are revealed in the

present paper, contributing at A = q−N are just the

first few terms of the expansion (2):

HK
r

(

A =
1

qN

)

=

= 1−

(N+1)(δK+1)
∑

s=0

[N + 1]GK
s (A = q−N )

{q}s−1[s]!
×

×

s−1
∏

j=0

{qr−N+j}{qr−j}, (15)

where the last product is Laurent polynomial in qr and

due to (5) the ratio in front of it is an r-independent

polynomial. Thus what we get is just a sum of a few

polynomials, multiplied by different powers of qr. They

do not overlap at large enough r, and this provides an

r-independent set of the coefficients, as in the above ex-

ample.

In fact, one could wish to interpret the remarkable

identity [19, 20]

HK
r (A = 1, q) = HK

1 (A = 1, qr) (16)

for Alexander polynomials as a manifestation of the

same phenomenon at N = 0. However this is literally so

only for δK = −1 and δK = 0. Still (16) is true not only

for all knots, but actually for all single-hook (and not

just single-line) representations R. For such representa-

tions (16) is a kind of a dual to (1).

6. Conclusion. In this paper we studied the “qual-

ity” of the differential expansion (2) for symmetrically

colored reduced HOMFLY polynomials – the typical

observables in the simplest possible Yang–Mills the-

ory. If only naive representation-theory properties are

taken into account from (1) to restriction l ≤ N on

the number l of lines in the Young diagram for partic-

ular SL(N), this expansion has the form (2) with ir-

reducible polynomial coefficient functions Gs(A, q). It

is well known, however, that sometime Gs are fur-

ther factorized, thus adding more restrictions/structures

to the color-dependence of physical observables. Now,

when methods were developed to study entire classes of

generic knots, we could attack this problem in a system-

atic way – and demonstrate that Gs are always factor-

izable for high enough s. The depth of factorization ap-

peared to depend on a single characteristic of the knot,

which we originally called defect of the expansion, and

further demonstrated that it is linearly related to the de-

gree of Alexander polynomial, what makes it very easy

to find.

This factorization universality leads to remarkable

kind of stabilization of symmetrically colored HOM-

FLY – ensuring that increasing r beyond some knot-

dependent boundary does not provide new physical

(topological) information. This is what one naturally

expects, and now we see how this actually works.

Highly desirable is extension of this new insight be-

yond pure symmetric and antisymmetric representa-

tions, but this requires further development of technical

tools in conformal, quantum group and R-matrix theo-

ries.
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