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The dynamics of the Quantum Polaron (QP) is studied at zero temperature.
The phonon variables are excluded and the Green function is obtained. An effec-
tive mass for both large adiabatic QP and small nonadiabatic QP is calculated.
In the first case the principal contribution to the mass comes from the thin "crust
layer” on a polaron surface.

In our recent work ! a new type of a self-trapped particle - Quantum Polaron
(QP) was proposed. On the contrary to the usual polaron, QP is not accompanied
by any lattice displacement. The origin of self-trapping is the local suppression of
the quantum fluctuations. Either adiabatic large QP or antiadiabatic small QP
can arise depending on the parameters of the system. QP can be realized in the
systems, where the quadratic electron-phonon interaction of the sign, correspond-
ing to the phonons stiffening, dominates and the linear interaction is suppressed,
for example, due to the symmetry restrictions. The most interesting candidates
for QP are, in our opinion, the charge carriers in LazCuOy4 coupled to the soft
orthorhombic modes 2, and the electrons, interacting with the rotational modes
in molecular crystals 3.

The structure of QP and the conditions for it’s existence were formulated in
1. However, a very important question about the spectrum and dynamics of such
a polaron remained open. In this paper we are solving this problem using the
methods of the integration over the lattice degrees of freedom. We are studying
the generalized model, in which both linear and quadratic couplings are present.
It should be stressed that we are confining ourselves to the T = 0 case. It is
known * that the quadratic coupling gives rise to unusual T —dependences even
for the perturbative effects.

We will start from the most interesting and complicated case of the continual
adiabatic polaron. Then the Lagrangian density of the system in the ”mixed”
representation ® has a form:

L= i"0 + TM(0Q) - 21 |Vul - TMuiQ? - o(TQ + 1407, (1)

where ) = ¢(rt) is the electron ” wave-function”, p = |4)|? is the electron density;
t. = 1/m.a?, m, is the electron mass and ag is the lattice spacing; @ = Q(rt)
is a lattice displacement, M = M,iad, My, is an atom’s mass, wy is the phonon
frequency; T' and 4 are the constants of linear and quadratic electron-phonon
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coupling respectively (y > 0). All the distances are measured in the units of ag ,
so r, Q and ¢ are the dimensionless variables. Everywhere k = 1, so te, wo, ', o
and M~! have the dimension of energy. For the sake of simplicity we consider
only the dispersionless phonons and local interaction. ’

After the integration over the phonon variables the electron Green function
takes a form:

G(Fats, 7it1) = / Dy* Dy (Fata) 9" (Fit1) exp{s / dFdt(iv* 9geh — %t,qublz)}x

x [ ] 4Q2dQ1x%, (@2)Xwo (@1)9]Q2t2, Qut1]|(72)], (2)

where x,(Q) is a ground state wave-function of an oscillator with a frequency w
and the electron-phonon interaction is assumed to be adiabatically turned off at
t and t3(¢; — —o0,t3 — +00). Note, that for our single-particle problem the
operator 19y must be determined in such a way that all the diagrams, containing
the electronic loops, vanish ®. In Eq(2) g is a Green function of an oscillator at
site ¥ with a time-dependent frequency w(r) in the presence of an external force

f(7):

w? = Wi +Q%p(Ft), f=Tp(t), 0 = v/M. (3)

The problem of such an oscillator is exactly semiclassical ® and its Green function
can be expressed in terms of a corresponding classical solution 7. The general
expression is rather cumbersome but in this work we are interested only in the
leading adiabatic approximation and in the first nonvanishing corrections to it.
Then the problem is simplified and the electron’s Green function can be expressed
in terms of an effective Lagrangian:

2
Leff = Lkin - U) th'n = Hll‘atl/) + 118[—6‘:% + %[&Q(p)]z,

(4)
U= StV + (o) - M (0)QH)

where Q(p) = T'p/Mw?(p) is the shift of an oscillator’s equilibrium position due
to the force f. The two last terms in L, are the nonadiabatic corrections, and
Just these terms determine the polaron’s mass M,;;. For the calculation of M, 11
insert ¢ = e"‘E°‘1/)0(F — ), corresponding to a polaron, moving with velocity v,
into Eqs(3),(4). Expanding the result in ¥ and identifying the coefficient at vZ;
with M,;z;/2, we obtain:

My =me+ % / d7(0,0)?w® + M / d7(0,Q)*. 5)

Here ) is the normalized wave-function of a stationary polaron. It corresponds
to the minimum of the energy functional J[¢}| = [dfU (See Eq(4)). In the
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limit 4 = O the functional J is transformed to a well-known form for a linear
coupling polaron 8, and in the limit T' = O the result of Ref. ! for QP is re-
produced. Accordingly, the third term in Eq(5) is analogous to the usual form
of a linear-coupling polaron mass & and the second term is a purely quantum
contribution. Note, that the absence of a.collapse for a three-dimensional QP
(see Ref. ') is preserved even in the presence of linear coupling: the quadratic
coupling suppresses the collapse for v > 0.

in(/t,)
A 'f\ (Vw)z 2= 7/2

;'\,‘”’ Fl s
Iy

I

5(8)

—Jda \ ln(ﬂ/wT,;
| L&)

2=-1
.
z=-1-4/D
Fif.1 Fig.2

Fig.1. The shape of a wave-function o and a lattice displacement Q¢ for large adiabatic QP
(Yrough and Qrougn are shown with broken lines). The surface |f] = @ is a polaron’s ®core”
boundary; Aa is a thickness of a polaron’s "crust®. An integrand in Eq(5) for M,s; is shown
with a dash-dot line.

Fig.2. An analysis of the model Eq(1). # is the tangent of a corresponding line’s slope. The
domain F - a free electron (M,ys = m.); The domain L - large adiabatic QP; in the region L(a)
an adiabatic approximation is valid also for the calculation of M,sy. The domain S - small QP;
in the region S(a) for the calculation of M,;; the electron’s kinetic energy can be treated as a
perturbation. In the regions L(b) and S(b) we did not succeed in obtaining M.ss. It requires
an information about subtle details of a wave-function in the polaron’s tail.

All the above considerations make sense only for the adiabatic large polaron,
which is realized (see Ref. ) under the conditions:

te > 0> wo; (0fwo)(w/t.)P/P+) » 1, (6)

where D is the space dimension.

It can be shown that for (I‘zwg/Mﬂs)(tc/Q)D/(D“) < 1 a linear coupling
may be treated as a perturbation. Then the above g almost coincide with g
of QP, obtained in Ref. ! (see Fig.1). In the rough approximation (totally
neglecting wp) we have:

Yo(F) 2 Yrougn(F) = 9(a — [71)(¢0(7) + ¢). (™
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Here ¢g is a spherically symmetric wave-function of a free electron and a
constant ¢ is determined by a requirement of the yo(7) smoothness at the polaron
surface (|f] = a). The correction to J due to the linear coupling is AJ = ~T'?/2y
and the corresponding Qo(7) = Qrougn(F) = ('/4)9(a — |).

So, a polaron consists roughly of ”a core” of radius a and ”an outer space”
(If1 > @), where o = 0 and the oscillators are free. However, in a more accurate
approach there is a some thin intermediate layer - ”a crust” (||f]—a|.< Aa) where
the two terms in Eq(3) for w? are of the same order and the true g differs from
Yrough- The crust thickness is

Aa =~ (wot,)/?/Q < a = (t./Q)/(P+4), (8)

When deriving Eq(8) we have supposed for simplicity that a linear coupling is
negligible not only in the core, but also within the crust. It needs a somewhat
stronger restriction on I': T?we/MQO* < 1.

If to ignore the crust and calculate M, inserting t,ou,n into Eq(5) then the
result would diverge at || — a since Y,ougn(r) = (2/t.)(|f1—a)? at 0 < a—|f] < a.
It means that the main contribution to M, ;s comes just from the crust and M,y
is wp-dependent. The simple estimates give:

b

M Q\3/2 /¢.\ 5D/ (2D+8) I Q\ /2 /¢.\ 5D/(2D+8)
Loall) @) e (a) (8)
m, wo N MQ3 \wy 0

where ¢; and c; are of order of unity. The first term is due to the quadratic
coupling solely and exists at I' = 0. The second term is a small correction due
to the linear coupling. Note that M,ss > m, in the whole domain of adiabatic
polaron existence.

The principal role of the crust in the effective mass poses a nontrivial question
about the adiabacity of a system’s wave-function within the crust. Of cause the
adiabacity fails sooner or later if one goes outwards the polaron center. However,
it can be shown that within the crust the adiabacity is still preserved as long
as Aa > 1, i.e., (wot.)/2/Q > 1 (See Fig.2). It means that unless the crust is
macroscopically thick (thicker than the lattice spacing) the adiabatic approxima-
tion is inapplicable for the calculation of M,;;.

Let s switch now to the case of a small antiadiabatic polaron, which is realized
for wg € t, <« . If t, is small enough then the electron is expected to be localized
on a single lattice site, while the neighboring oscillators are not disturbed. Then
to find a polaron bandwidth one has to calculate a matrix element of a kinetic
energy between the two degenerate states, centered at the neighboring sites:

ters = (Megsa3) ™ = te] < XuolX(uarazyys > [ ~ te(wo/Q)2. (10)

So M, sz /m, for small QP is large due to the mismatch of the oscillator frequencies
corresponding to an occupied state ({2) and to an empty one (wp). Note, that
the influence of quadratic coupling on the transition amplitudes for the molecular
excitons was discussed in Ref. °.
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It can be shown that the above calculation is correct only for t?/wo(l < 1,
i.e. it fails if wp is too small. Indeed, although at t, < (1 the electron visits the
neighboring sites very rarely, it still may disturb the oscillators’ states if they are
soft enough.

So we were able to find M,y for both large adiabatic QP and small antia-
diabatic one, but for not too small wy (Fig.2). Such a restriction on wy does
not appear if one is interested only in the static characteristics of QP (polaronic
shift etc.), which are determined by the core. On the contrary, M, is governed
by "exotic” parts of a polaron, where the system’s wave-function can not be
factorized and all the methods known fail.

We are indebted to E.I.Rashba for valuable discussions.
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