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In a short review-article we first discuss the results, which are mainly devoted to the generalizations of

the famous Kohn–Luttinger mechanism of superconductivity in purely repulsive fermion systems at low elec-

tron densities. In the context of repulsive-U Hubbard model and Shubin–Vonsovsky model we consider briefly

the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated

electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion

systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temper-

ature superconductivity in cuprates (with TC of the order of 100 K) we should proceed to the t−J model with

the van der Waals interaction potential and the competition between short-range repulsion and long-range

attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with

TC of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron-

phonon interaction. These mechanisms arise in the attractive-U Hubbard model with static onsite or intersite

attractive potential or in more realistic theories (which include retardation effects) such as Migdal–Eliashberg

strong coupling theory or even Fermi–Bose mixture theory of Ranninger et al. and its generalizations.
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I. Introduction. Recent discovery of Cooper pair-

ing at 190 K in metallic hydrogen sulfide H2S under

high pressure revives our hopes to move forward from

high-temperature to room-temperature superconductiv-

ity [1–5]. In the same time there are many interesting

low-temperature superconducting systems with anoma-

lous types of pairing and a nontrivial structure of the

order parameter.

In the beginning of the review-article we discuss the

mechanisms of unconventional superconductivity in 3D

and 2D fermionic systems with purely repulsive inter-

action at low densities. We briefly discuss the phase-

diagrams of these systems in free space and on the lat-

tice and find the areas of the superconductive state

in the framework of the Fermi-gas model with hard

core repulsion, the Hubbard model [6] and the Shubin–

Vonsovsky model [7, 8]. We demonstrate that the critical

superconductive temperature can be greatly increased

in the spin-polarized case or in a two-band situation al-

ready at low densities.

The proposed theory is based on the Kohn–Luttinger

mechanism of superconductivity [9] and its generaliza-

tions and explains or predicts p-, d-, f - and anomalous

s-wave pairing in various materials such as the ideal-

1)e-mail: kagan@kapitza.ras.ru

ized monolayer and bilayer graphene, heavy-fermion sys-

tems, layered and organic superconductors, iron-based

superconductors, superfluid He-3 and spin-polarized He-

3–He-4 mixtures, imbalanced 3D and 2D Fermi gases in

the restricted geometry of magnetic traps [10–19].

To get really high superconductive temperatures we

should either consider the repulsive models at high elec-

tron densities (for instance in parquet situation close

to van Hove singularities [20–22]) or not the purely re-

pulsive models (like the t−J model for cuprates with

TC = 100K and the van der Waals interaction potential

consisting of strong Hubbard repulsion on one site and

weak antiferromagnetic attraction on neighboring sites

[23, 24]).

If we change the sign of the interaction completely

and consider an attractive-U Hubbard model [25, 26],

then at low electron density and strong attraction, the

high critical temperature is connected with bosonic

character of superconductivity [27–29]. Here at higher

temperatures we get local pairs formation in real space

at the Saha crossover temperature T ∗ [27, 30] and then

their Bose–Einstein condensation at the lower criti-

cal temperature TC (as in the problem of BCS-BEC

crossover [27–30] for ultracold Fermi gases in the regime

of Feshbach resonance [31–39]). In this case we have

a new state of matter at intermediate temperatures,
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namely the normal bosonic metal with interesting trans-

port and thermodynamic characteristics, including very

nontrivial square root type (R ∼
√
T ) temperature be-

haviour of the resistivity in the 2D case [25, 26].

At higher electron densities in this class of models

the two-component Fermi–Bose mixture of local pairs

and one-particle excitations arises [40–45] and defines

superconductive and transport properties of the system

(as in the case of BaKBiO3 superconducting oxides).

We should stress that unconventional mechanisms

compete for different materials with electron-phonon

interaction in more conventional weak-coupling (BCS)

[46–50] or Migdal–Eliashberg strong-coupling version

[51–56]. This situation is likely to occur in metallic hy-

drogen sulfides and possibly in pure metallic hydrogen

under very high pressures of several Megabars [1–5, 57–

71].

II. Kohn–Luttinger effect in repulsive Fermi

gas model. It was widely accepted that fermion sys-

tems with purely repulsive interaction remain in the nor-

mal state at very low temperatures. Challenging these

naive expectations Kohn and Luttinger in 1965 [9] pro-

posed a new mechanism of superconductivity in repul-

sive fermion systems based on the presence of Kohn’s

anomaly [72] (q − 2pF) ln |q − 2pF| or Friedel oscilla-

tions [73, 74] cos(2pFr)/(2pFr)
3 in the effective interac-

tion Ueff of two femions via polarisation of the fermionic

background in 3D. Unfortunately they predicted very

low critical temperatures of d-wave pairing for super-

fluid transition in He-3 and superconductive transition

in electron plasma of metals and that was a reason why

their results were unjustly forgotten. Later on Fay and

Layzer [10], Kagan and Chubukov [14] generalized the

Kohn–Lutinger results on the case of 3D Fermi gas with

hard-core repulsion and got reasonable TC ’s of triplet

p-wave pairing [11–14]

TC1 ∼ εF exp

(

− 13

f2
0

)

, (1)

where f0 = 2pFr0/π is an effective gas parameter of Gal-

itskii [75]. It should be noted that in their theory the

Kohn’s anomaly played important but not decisive role.

According to the considerations of Prof. Nozieres [12], to

get the attraction between two fermions in substance in

the p-wave channel it is sufficient to have an effective po-

tential which is increasing in the important interval from

0 to 2pF in momentum space (and of course decreasing

at larger momenta p ≥ 1/r0, where r0 is the range of

the potential). The authors got TC of the order of 1 mK

for superfluid He-3 and (1–10)mK for electron plasma

in metals in the limit of intermediate electron densi-

ties [15]. In the 2D case the authors predicted p-wave

superconductivity below the critical temperature [11–

13, 76–78]

TC1 ∼ εF exp

(

− 1

6.1f3
0

)

, (2)

where f0 = 1/2 ln(1/pFr0) is an effective 2D gas param-

eter of Bloom [79]. Note that specific form of polari-

sation operator (and one-sided character of the Kohn’s

anomaly for q ≤ 2pF) Re
√
q − 2pF = 0 in 2D case pro-

hibits the superconductive pairing in the second order

of the gas parameter for the effective interaction Ueff.

However, in the third order of the gas parameter the

character of the Kohn’s anomaly changes on the oppo-

site one Re
√
2pF − q, and as a result a large 2D Kohn’s

anomaly becomes effective for superconductivity prob-

lem bringing nonzero critical temperature in Eq. (2) [76].

A thorough evaluation of TC in 2D Fermi gases (which

includes the consideration of all irreducible diagrams of

the third order in the gas parameter in the effective in-

teraction) was fulfilled in [77, 78].

III. Superconductivity in repulsive-U Hub-

bard model at low electron densities. Soon after

the first papers on p-wave pairing, Baranov, Kagan and

Chubukov [13, 80, 81] generalized these results on the

lattice models. The authors considered 3D and 2D Hub-

bard model at low electron densities. In agreement with

T -matrix Kanamori ideas [82] they came to the conclu-

sion that Hubbard model at low density is equivalent to

the Fermi gas model with the effective gas parameters

given by f0 = 2pFd/π (d is intersite distance) in 3D

and f0 = 1/2 ln(1/pFd) in 2D [83]. As a result they got

the same TC ’s of triplet p-wave pairing as in the case of

Fermi gas under the substitution of r0 on d [82] in gas

parameters in the Eqs. (1) and (2).

IV. Superconductivity in the Shubin–

Vonsovsky model. The Shubin–Vonsovsky model

[7, 84–86] (or extended Hubbard model [84] as it is

usually referred to in Western literature) is the most

repulsive and thus the most unbeneficial model with

respect to superconductivity. However, even in this

model in the strong coupling case U ≫ V ≫ W

(when both onsite Hubbard repulsion U and intersite

Coulomb repulsion V are larger than the bandwidth

W ) a detailed analysis of [84] showed the appearance

of triplet p-wave superconductivity in the 3D and 2D

low density case. Moreover, the main exponent for the

Kohn–Luttinger critical temperature is given precisely

by the same expression as for repulsive-U Hubbard

model in the limit V = 0. The presence of sufficiently

large V changes only the preexponential factor. In the

opposite case of weak-coupling Born approximation

W ≫ U ≫ V the authors of [85–90] constructed the

superconducting phase-diagrams which contain the
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regions of p-, d-, f - and anomalous s-wave pairing. The

calculations were presented for quadratic and hexago-

nal lattices and can be important for superconductive

pairing in FeAs-based superconductors [85–88] as well

as for idealized monolayer and bilayer graphene. The

crystal structure and typical phase diagram of the

superconducting state in bilayer graphene [89, 90] are

presented on Figs. 1 and 2. Note that if we neglect

Fig. 1. (Color online) Crystal structure of graphene bilayer

[11, 89]

Fig. 2. (Color online) Phase diagram of superconducting

state in idealized bilayer graphene [11, 89]

the influence of the substrate potential and disregard

structural disorder and both magnetic and nonmagnetic

impurities, we get rather optimistic estimates for TC ’s

in monolayer and especially bilayer graphene on the

level of 10–20 K [88–92].

V. Strong TC enhancement in the repulsive

two-band Hubbard model and in a spin-polarised

Fermi gas. Usually the Kohn–Luttinger superconduct-

ing temperatures are low enough. There are two possible

ways to increase TC considerably. First way is obvious.

It is just to increase the density of electrons. The sec-

ond possibility was proposed in [16–19, 93–97]. Namely

the authors proposed to consider strongly spin-polarised

Fermi gas [16, 19, 93] or the two-band situation [17, 94–

97]. The strong TC increase in both cases already at

low density is connected with the idea of the separation

of the channels. According to this scenario the Cooper

pair is formed by two fermions with spins up (by two

electrons of the first band) while effective interaction

for them is prepared by two fermions with spins down

(by two electrons of the second band). In this case the

Kohn’s anomaly acquires a form (q↑−2pF↓) ln |q↑−2pF↓|,
where q2↑ = 2p2

F↑(1− cos θ).

In terms of the angle θ between incoming and outgo-

ing momenta in the Cooper channel the Kohn’s anomaly

changes its form from (π−θ)2 ln(π−θ) in the absence of

spin polarisation on (θ−θC) ln |θ−θC | in the presence of

it, where θC differs from π proportionally to pF↑/pF↓−1.

Thus it becomes stronger when the ratio of the Fermi

momentum of the two components pF↑/pF↓ ≥ 1 in-

creases. In the same time the number (and the density

of states) of down spins decreases with an increase of

the spin-polarisation. As a result we have strongly non-

monotonous dependence of the triplet p-wave TC from

the ratio of pF↑/pF↓ ≥ 1 or from the density ratio n↑/n↓.

Moreover both in 3D and especially in 2D case (where

we get now superconductivity already in the second or-

der of the gas parameter for the effective interaction)

we have a very pronounced and a very broad maximum

for the optimal density ratio. In the 2D case the opti-

mal density ratio n↑/n↓ = 4 and the main exponent for

triplet p-wave TC in maximum increases in several times

bringing quite substantial values

T ↑↑
C1 ∼ εF↑ exp

(

− 1

2f2
0

)

. (3)

The dependence of T ↑↑
C1 in 2D polarised Fermi gas

with repulsion on the polarisation degree α = (n↑ −
− n↓)/(n↑ + n↓) is presented on Fig. 3.

This theory is important for spin-polarised He-3–He-

4 mixtures [93] as well as for 3D and 2D imbalanced

Fermi gases of 6Li and 40K in the reduced geometry

of magnetic traps [19, 98]. For pure superfluid He-3 it

predicts 6.4 times increase of triplet p-wave TC for su-

perfluid A1-phase at optimal spin-polarisation of 48 %

[13, 16, 19, 93]. The 20 % increase of the critical temper-

ature in the A1-phase was obtained in magnetic fields

B = 15T in the experiments [99, 100].

Concerning electron systems, the theory predicts

p-wave superconductivity in superlattices PbTe–SnTe
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Fig. 3. (Color online) TC dependence on polarisation de-

gree in 2D repulsive Fermi gas [12, 16]

and dichalcogenides CuS2–CuSe2 for geometrically sep-

arated bands belonging to the neighbouring layers [17].

It also predicts TC of the order of 0.5 K in very clean

low density 2D heterostructures in a strong (parallel to

the electronic layer) magnetic field [18]. The supercon-

ducting phase-diagram of the electronic monolayer in

parallel magnetic field is presented on Fig. 4.

Fig. 4. The superconducting state of 2D electron gas in

a parallel magnetic field [12, 18]

Finally the theory [95–97] for superconductivity and

electron polaron effect in the two band Hubbard model

with one narrow band predicts strong enhancement of

an effective mass of heavy electrons dressed in a vir-

tual cloud of soft electron-hole pairs of light electrons.

Moreover it yields quite reasonable TC ’s of the order

of 5–10 K for pairing of heavy electrons in the situa-

tion when effective interaction for them is prepared by

light electrons. The theory can be important for ura-

nium based superconductors such as UNi2Al3 and some

other mixed valence systems at low electron densities.

VI. High-TC superconductivity in the two-

dimensional t−J model. Usually Kohn–Luttinger

mechanism and its generalizations are very effective to

provide us with unconventional low temperature super-

conductivity in purely repulsive fermionic systems. To

get really high TC superconductivity we should consider

the models with not purely repulsive potentials. In this

context the very important role belongs to the famous

t−J model, which in fact is the model with the van der

Waals potential. It corresponds to strong onsite Hub-

bard repulsion and weak intersite AFM attraction. As

it was shown by Kagan, Rice [24], it is very simple to get

100 K in this model for the set of parameters typical for

high TC cuprates, namely for optimal electron densities

ne ∼ 0.85 (optimal doping) and the ratios J/t ∼ 1/2

TC ∼ εF exp

(

− πt

2Jn2
e

)

. (4)

The symmetry of the order parameter in this case

corresponds to dx2−y2-type in agreement with exper-

iments in cuprates. The interacting potential and su-

perconducting phase diagram of the 2D t−J model are

presented on Figs. 5 and 6.

Fig. 5. Interaction potential in 2D t−J model [12]

VII. Superconductivity and BCS-BEC

crossover in attractive Fermi gas and Hubbard

models. Let us go further on and consider purely

attractive short-range potentials. In the absence of

the lattice we have then an attractive Fermi gas. In

the lattice case we are dealing with the attractive-U

Hubbard model. Note that the attractive Hubbard

model is a static model which does not contain the

retardation effects. The phase-diagram of this model

(as well as of the attractive Fermi gas model) in the 3D

case corresponds to the BCS-BEC crossover between

extended Cooper pairs (formed in momentum space

in the presence of filled Fermi surface at small values

of |U |/W ) and local pairs or dimers (formed by two

fermions in vacuum at large values of |U |/W ≥ 1). In

the BCS domain of extended pairs in both models the
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Fig. 6. (Color online) The phase-diagram of superconduct-

ing state of 2D t−J model [12, 24]

s-wave scattering amplitude corresponds to attraction

a < 0, and in the same time the one-particle chemical

potential is positive µ > 0. Vise versa in the BEC

domain of local pairs the scattering length is positive

a > 0 (signaling the appearance of the two-particle

bound state in vacuum) and correspondingly the

chemical potential is negative (µ < 0). Moreover for the

BEC domain we have two characteristic temperatures.

The higher crossover (Saha) temperature [30] is given

by:

T ∗ ∼ |EB|
3/2 ln

(

|EB|
εF

) , (5)

where |EB| is a binding energy of a local pair. Let us em-

phasize that T ∗ in Eq. (5) corresponds to the thermody-

namic equilibrium between creation and dissociation of

local pairs [101]. In the same time the lower (BEC) criti-

cal temperature corresponds to the real phase-transition

and in the principal approximation is given by Einstein

formula [102]:

TBEC

C ∼ 3.31
(n

2

)2/3

/mB, (6)

where mB is a bosonic mass (a mass of a local pair or

a dimer). In the strong-coupling limit |U | > W in a lat-

tice model with discrete hoppings only on neighbouring

sites a bosonic mass will be enhanced mB ∼ m |U|
W ac-

cording to the second order perturbation theory of [27]

(at first hops one electron of the local pair, virtually de-

stroying it, and after that the second one restoring the

pair). Note that in the absence of the lattice (in Fermi

gas model) mB = 2m. For the case of Fermi gas substi-

tuting in Eq. (6) the 3D fermionic density n = p3
F
/3π2

and Fermi energy εF = p2
F
/2m we finally get:

TBEC

C ∼ 0.2εF[1 + 1.3a2−2n
1/3], (7)

where nontrivial corrections to Einstein expression [103]

are governed by the dimer-dimer scattering amplitude.

In exact calculations of Petrov et al., and Brodsky et al.,

a2−2 = 0.6a [104–107]. As we already mentioned in the

Introduction, the BCS-BEC crossover experimentally

was realized in ultracold Fermi gases in the regime of

Feshbach resonance [31–39]. The typical phase-diagram

of the BCS-BEC crossover in 3D resonance Fermi gas is

presented on Fig. 7.

Fig. 7. The typical phase-diagram of BCS-BEC crossover

in the resonance 3D Fermi gas [12, 30]

Note that in between the two characteristic tempera-

tures, namely for TC ≪ T ≪ T ∗, we have an interesting

new phase of a normal Bose metal. Note also that an

important criterion for the stability of the local pairs

state is connected with the low density limit, or in an-

other words, with the condition |EB| > εF. This condi-

tion means that the effective radius of the local pair a

(|EB| = 1/ma2) is much smaller than the interparticle

distance 1/pF.

When we increase the density, the local pairs at first

(for |EB| ∼ εF) begin to touch each other and finally

(at large densities) crush the paired state completely.

At intermediate densities for 1 ≤ apF ≤ 3 in BEC do-

main [12] we can describe the system in terms of Fermi–

Bose mixture of local pairs and one particle excitations.

Note that in dilute BCS limit the critical temperature

is given by Gor’kov–Melik–Barkhudarov formula for 3D

attractive Fermi gas [108]:

TC = 0.28εF exp

(

− 1

|f0|

)

, (8)

where a 3D gas parameter |f0| = 2|a|pF/π.
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The situation in 2D attractive-U Hubbard model as

well as in the 2D Fermi gas model is qualitatively simi-

lar to the 3D case in a low density limit. The only sub-

stantial difference is connected with an appearence of

the intermediate coupling case which is realized in the

parameter region W
ln(|EB|/εF)

< |U | < W (see [12] and

Fig. 8). In 2D Fermi gas model according to the Fisher–

Fig. 8. (Color online) Phase-diagram of the attractive-U

Hubbard model in 2D case [12]

Hohenberg theory [109] the mean field (BEC) critical

temperature in the local pairs domain is given by

TBEC

C ∼ εF

4 ln(1/f2−2)
, (9)

where according to [110] f2−2 ∼ 1/ ln(1.6|EB|/εF) is a

2D coupling constant which describes the repulsive in-

teraction between the dimers. In low density 2D Fermi

gas the mean field TBEC

C in Eq. (9) is only slightly differ-

ent from the exact Berezinskii–Kosterlitz–Thouless crit-

ical temperature [111, 112]:

|TBEC

C − TBKT

C |
TBEC

C

∼ f2−2 ≪ 1. (10)

The crossover Saha temperature in 2D yields:

T ∗ ∼ |EB|

ln

( |EB|
εF

) , (11)

where a binding energy is given by |EB| =

=
1/md2

exp
(

4π
md2|U|

)

− 1
∼ W

exp
(

W
|U|

)

− 1
.

For intermediate temperatures TBKT

C ≪ T ≪ T ∗

we again have a phase of normal bosonic metal. In 2D

attractive-U Hubbard model in this phase even in a

very clean limit (no impurities) the resistivity behaves as

R(T ) ∼
√
T (due to boson-boson scattering with Umk-

lapp processes on the lattice [12, 25, 26]). Note that re-

sistivity characteristics of this type can be obtained in

degenerate semiconductors. Also quite interesting is a

tunneling process between normal bosonic metal and

standard BCS superconductor [12].

In the same time the BCS critical temperature in 2D

is given by Miyake formula [113]

TBCS

C ∼
√

2|EB|εF. (12)

Note that for symmetric potentials in 2D the two-

particle bound states appear already at infinitely small

attraction [114] (in contrast with the 3D case where we

have a threshold for bound state formation [115]). So,

the two phenomena coexist: the Cooper pairing in mo-

mentum space (in the presence of filled Fermi sphere)

and the formation of the local pair in real space in vac-

uum [116, 117]. Let us stress that in the BCS domain

creation and Bose condensation of Cooper pairs take

place simultaneously, and thus TBCS

C = T ∗.

Note also that for the weak-coupling case |EB| ≪ εF,

as it was shown in [118], the mean-field TBCS

C in Eq. (12)

is close again to exact critical temperature TBKT

C :

|TBCS

C − TBKT

C |
TBCS

C

∼ TBCS

C

εF

∼
√

|EB|
εF

≪ 1. (13)

For the intermediate coupling case |EB| ≤ εF and

the difference between TBCS

C and TBKT

C becomes more

substantial. Let us emphasise that in the BCS domain

at T = 0 we have a positive chemical potential µ =

= εF − |EB|/2 > 0 [113].

VIII. Strong coupling Migdal–Eliashberg the-

ory. The recordly high temperature conventional super-

conductivity in metallic H2S under pressure brings our

attention back to more standard electron-phonon mech-

anisms. Note that the classical strong coupling Migdal–

Eliashberg theory [51, 52] is based on the concept of adi-

abaticity and assumes that both the coupling constant

of electron-phonon interaction is not very large (λ ≤ 1)

and the ratio between Debye frequency and Fermi en-

ergy is small ωD/εF < 1. The theory works pretty well

in many conventional superconductors discovered in the

past as well as in several new systems like K3C60 [69–

71], metallic hydrides [1–5] and possibly in metallic hy-

drogen, which is not discovered yet. Note that in 1968

the very high TC superconductivity of electron-phonon

nature was proposed by Aschcroft [61, 62] for metallic

hydrogen at high pressures.

IX. Alexandrov–Ranninger bipolaron theory

in the nonadiabatic systems with strong po-

laron effects. Challenging Migdal–Eliashberg theory

[51, 52], Alexandrov, Ranninger in 1981 [119, 120] ad-

vanced the bipolaron theory based on nonadiabatic-

ity and strong polaronic effects. Note that stability of
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Fig. 9. Crystal structure of superconducting alloy BaKBiO3 [12, 44]

Alexandrov–Ranninger bipolaron state in total analogy

with attractive-U Hubbard model requires a low density

limit for charge carriers (polarons and bipolarons). In

another words, a bipolaron binding energy |EB| should

be larger than the effective width of the narrow band

Weff (strongly reduced by polaron effect): |EB| > Weff

[121]. Moreover the material should be characterized by

large electron-phonon coupling constant λ > 1.

Experimentally the bipolaron theory should corre-

spond to large effective masses of small radius bipo-

larons and to the systems with an unconventional nega-

tive curvature (with a strong increase) of the upper crit-

ical field HC2 at low temperatures T ≪ TC [122, 123].

Note that in layered high TC cuprates the thorough

investigations of the phonon spectrum by Andersen

group [124] yield the electron-phonon coupling constant

λ ∼ 1/2 even for the bismuth family of cuprates (where

strong-coupling effects were mostly probable), so bipo-

laron formation is unlikely here.

X. Superconductivity in the Fermi-Bose mix-

ture model. The conditions for local pairs formation

and their stability (as we already mention in section

VII) are milder in the model of the two component

Fermi–Bose mixture firstly introduced by Ranninger

et al. [40, 41]. This model was initially formulated for

cuprates (see also an interesting suggestion of Geshken-

bein, Ioffe, Larkin [42] who advocated this model for

2D electron systems with filling factors close to van

Hove singularities on quadratic lattice or for quasi-1D

spin-ladder systems). However, later on it found an im-

portant application for the ultracold quantum gases in

the regime of Feshbach resonance. In the last case it is

usually called the two-channel Feshbach model [39] and

contains a Feshbach–Ranninger term which effectively

transforms the Cooper pair of two fermions in one chan-

nel into the real boson (a local pair) in the other channel

[39, 125, 126].

Note that the formation of local pairs of the exсitonic

nature is possibly realized in BiO6 clusters in supercon-

ducting alloys BaKBiO3 due to valence skipping consid-

erations of Varma [127]. Moreover according to Kagan,

Menushenkov et al. [44, 45], in this class of materials

we can possibly describe the system in the framework

of the two component Fermi–Bose mixture of Alexan-

drov, Ranninger type, but with one substantial remark

that the two components are separated in the real space,

while the separation between them in energy space is

absent. This model describes rather well many trans-

port and thermodynamic properties of these materials.

The crystalline structure of BaKBiO3 and the interplay

between Fermi and Bose subsystems are presented on

Figs. 9 and 10. Note that superconductivity with a crit-

ical temperature TC ∼ 36K in this class of materials is

connected with the delocalization and phase-coherence

in the bosonic subsystem which is achieved via sucsss-

esive processes of coherent tunneling of local pairs from

one Bose cluster to a neighbouring one (and so on)

through the effective barriers prepared by Fermi clus-

ters.

XI. Discussion. Hidden unconventional super-

conductivity in graphene and conventional su-

perconductivity in metallic hydrogen alloys un-

der pressure. As we already mentioned in Section

IV, the Kohn–Luttinger mechanism gives rather opti-

mistic predictions for idealized monolayer and bilayer

graphene. In contrast to these expectations in real

graphene superconductivity has not been observed yet

experimentally. The reason for that is probably con-
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Fig. 10. Interplay between Fermi and Bose subsystems in superconducting BaKBiO3 [12, 44]

nected with the presence of structural disorder and non-

magnetic impurities in the real graphene. Even record

experimental parameters with respect to the maximal

effective mean free path l ∼ 2000 Å and the maximal 2D

electron density n ∼ 1013 cm−2 correspond today to the

so-called dirty limit (or in the best case to the moder-

ately clean limit), where the anomalous Kohn–Luttinger

superconductivity will be totally suppressed by disorder

in agreement with Abrikosov–Gor’kov–Larkin theory

[125, 128, 129] (see also [130–135] for the new results on

the interplay between superconductivity and localiza-

tion). Thus the experimental challenge for the future in-

vestigations of graphene is to go to the superclean limit,

which means either to reduce the degree of disorder and

the number of impurities or to increase the electron den-

sity in the monolayer. One more option here can be

connected with quasi one-dimensional structures such

as graphene nanoribbons. In this structures, however,

we should expect the competition between supercon-

ducting ordering and Peierls-like instabilities of SDW

or CDW type [136]. Finally Volovik and Esquinazi [137]

advocated the idea of topologically protected supercon-

ductivity on the special graphite interfaces.

Note that the role of disorder is very interesting also

in the attractive-U Hubbard model. Here according to

BdG analysis [47, 48, 138] of Randeria et al. [135] at

strong disorder and low temperatures T → 0 we will

get the superconductive islands separated by an insu-

lating sea. Moreover in the strong-coupling limit of the

attractive-U Hubbard model (for |U |/W ≫ 1) the insu-

lating phase corresponds to the Bose glass phase in ac-

cordance with the prediction of Fisher [139]. This result

is very important for superconductor-insulator transi-

tion in disordered thin films [140, 141].

The conventional mechanisms can be also rather ef-

fective especially in the systems with high phonon fre-

quencies ω and relatively large coupling constant λ ∼ 1

(which is not compensated in these systems by the small

Coulomb pseudopotential µ∗), as well as in the systems

with anharmonic two-well potentials [142]. The metal-

lic hydrogen stabilized by sulfur in H3S at high pres-

sures and possibly not experimentally discovered yet

pure metallic hydrogen could be the very good candi-

datures for the Migdal–Eliashberg mechanism of super-

conductivity and its generalizations.

Note that historically the first discussion on the

phase transition from molecular to metallic hydrogen

phase at high pressures belong to Wigner and Hunting-

ton in 1935 [57]. We should also mention here important

papers by Kronig, de Boer, and Korringa [58] and by

Abrikosov [59, 60].

Thorough examination of the important families

of the local minima of the thermodynamic potential

for metallic hydrogen at different pressures in a nor-

mal (non- superconducting) state belongs to Brovman,

Yu. Kagan, and Kholas [63, 64]. At relatively low pres-

sures and T = 0 they predict strongly anisotropic trian-

gular phase with proton filaments in an electron liquid.

These filaments form rigid 2D triangular lattice in the

plane perpendicular to them. In the same time (simi-

lar to vortex lattice in type-II superconductor or in su-

perfluid He-4) there is a tendency towards liquid-like

motion in the direction parallel to the filaments. At

higher pressures the local minima correspond in their
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calculations to planar structures. These structures also

have pronounced liquid-like tendencies which (similar to

graphite) are connected with the smallness of the effec-

tive shear modulus. Finally at very high pressures the

local minima correspond to the structures which become

more and more isotropic when we increase the pressure.

In this context an important unresolved problem is

to construct the gross phase diagram of solid hydrogen

under pressure and to determine the global minima both

in molecular and metallic phases as well as the position

of the transition line P ∗(T ) between them. The main

difficulty here is connected with a big uncertainty in the

calculation of the thermodynamic potential for molecu-

lar phase. Here we should mention the first experimental

results of Eremets, Troyan, Drozdov [2]. They get the

possible transition from molecular to the metallic phase

at the pressures of the order P ∼ 360GPa and temper-

atures 200 K.

XII. Conclusions. During last 30 years after dis-

covery of high-TC superconductivity we observe a lively

discussion between different theoretical schools which

support conventional or unconventional scenarious of

superconductivity. The experimentalists are constantly

supplying the both parties with the new evidences and

new superconducting families which belong either to

conventional or unconventional class of materials. The

dispute clearly enriches the fascinating and rapidly de-

veloping field of high-TC superconductivity. The broad

and objective (unbiased) outlook is necessary for the

new predictions on the most perspective materials with

critical temperatures approaching the room tempera-

ture superconductivity.
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