Сдвиг между линиями испускания и поглощения при естественном сильном сужении (ECC) линий Мессбауэра. Путь к исключению систематических ошибок в опытах с ECC

С. В. Карягин¹⁾

Отдел строения вещества им. Гольданского, Институт химической физики им. Семенова РАН, 119991 Москва, Россия

Поступила в редакцию 20 июня 2016 г.

Дополнительно исследовано естественное сильное сужение (ЕСС) линий Мессбауэра на долгоживущих изомерах, корректно обнаруженное группой Давыдова (Письма в ЖЭТФ **90**(7) (2009)) и непротиворечиво объясненное Карягиным (Письма в ЖЭТФ **98**(3), 11 (2013)). Показано, что в опытах с ЕСС в однородной среде γ -источника возникает химический сдвиг δ между γ -линиями испускания (Е) и поглощения (А). Ранее считали, что такого сдвига не может быть. Развита теория γ -резонансного гравитационного спектра с учетом δ . Найдены δ и новая ширина линии k, которая заметно меньше ширины без учета δ . Показано, что времена жизни изомеров для опытов с ЕСС сильно ограничены сверху подавлением γ -резонанса сдвигом δ . Малостью δ подтверждается выявленный недавно эффект естественного сильного подавления (ЕСП) монопольного уширения (С. В. Карягин, Письма в ЖЭТФ **103**(3) (2016)). Показано, что плотность электронов на ядре Аg внутри зерен меньше, чем на их периферии на $\sim 10^{-14}$ %. Для обнаружения более тонких эффектов предложены опыты нового типа, позволяющие исключать систематические ошибки.

DOI: 10.7868/S0370274X1616013X

1. Введение. Долгоживущие изомеры (их время жизни $\tau \gg 10^{-4} \,\mathrm{c}$) считались принципиально не пригодными для γ -лазера, т.к. ширина мессбауэровской линии Г всегда больше диполь-дипольного (dd-) уширения $\Gamma_{dd} \sim 10^4 \, {\rm c}^{-1}$ [1]. Это мнение было поколеблено опытами групп Гонзера (Gonser) [2], Хоя (Hoy) [3] и Давыдова (Davydov) [4] на линии 88 кэВ изомера ^{109m}Ag, $\tau = 57$ с (см. также ссылки в [3,4]. Из [2–4] следовало, что ширина Γ всего в $k=\Gamma\tau\sim 10$ раз больше естественной ширины линии $\Gamma_{\rm nat} = 1/\tau$, в то время как $k_{dd} = \Gamma_{dd} \tau \sim 10^6$. Но эти опыты были поставлены не достаточно корректно, т.е. существовала угроза систематических ошибок, и, значит, результат $k \ll k_{dd}$ мог быть ложным. Это отмечено в [2, 5-8]. Лишь в 2009 г. группой Давыдова [5] была достаточно корректно установлена истинность эффекта $k \ll k_{dd}$. Но в [5] этот эффект не был непротиворечиво объяснен.

Непротиворечивые же объяснения были даны в [6-8]. До работ [6-8] их автор, Карягин, исследовал корректность постановки опытов [2-5]. В отличие от [2,3], опыты [4,5] основаны не на зависимости фактора Мессбауэра f от температуры, а на зависимости гравитационного сдвига частоты γ -кванта от перепада высот между испускающим и поглощающим

ядрами. Но из [4,5] только опыты [5] оказались достаточно корректными. Лишь осознав это, Карягин начал поиск объяснения явлению $k \ll k_{dd}$, назвав его в [6] естественным сильным сужением (ЕСС = = NSN = Natural Strong Narrowing), т.к. оно возникает в естественных условиях и сужает линию на порядки. Объяснения [6-8] привели к ряду неожиданных результатов. Во-первых, в [5] считалось, что в магнитных полях порядка поля Земли сверхтонкая структура (СТС) хорошо разрешена (расщеплена). Согласно же [6-8] в этих полях все компоненты СТС сливаются (коллапсируют) в единую линию (синглет). Во-вторых, коллапсируют все типы СТС (дипольные, квадрупольные и др.). При этом подавляются все виды мультипольных уширений, кроме монопольного. В [5] считалось, что подавляется только dd-уширение. В-третьих, при коллапсе СТС выход γ -квантов из источника не зависит от угла ψ между магнитным полем и волновым вектором у-кванта [7]. Согласно же [4, 5], выход γ -квантов зависит от ψ . Анализ [7] первичных данных из [5] опроверг зависимость γ -отсчетов от ψ . В-четвертых, в [8] выявлен эффект естественного сильного подавления (ЕСП) химического уширения Г_{сh}. Согласно [8], уширение $\Gamma_{\rm ch}$ в опытах [5] неожиданно мало, составляя 0.1–0.01 от полной ширины Г.

¹⁾e-mail: akaryagina@gmail.com

Итак, ЕСС сводится к ЕСП и коллапсу СТС. В основе ЕСП лежат свойства ферми-жидкости [8]. В основе коллапса лежат две причины. Первая – высокочастотный (~ 10^{16} Гц) обмен электрона на ядре с электронами зон [6]. Вторая – виртуальные переходы между уровнями ядра [7,8]. Вероятно сочетание обеих причин, именуемых в [7,8] обменным (e-"exchange") и виртуальным (v – "virtual") механизмами. Таков экскурс в ЕСС. Настоящая работа, как и [7], посвящена опытам по ЕСС и их постановке.

Введем в описание ЕСС новый фактор - химический сдвиг между частотами γ -испускания (Е) и γ-поглощения (A). В работе [5] существование такого сдвига не допускалось ввиду высокой однородности источника. Но у испускающих и поглощающих ядер разные предыстории. Испускающие ядра ^{109m}Ад рождаются ядрами ¹⁰⁹Cd, внедренными в матрицу из высокочистого серебра. Атомы Cd, химически иные, чем Ag, вытесняются из зерен серебра к их границам, где и рождаются ядра ^{109m} Ag. Поглощающие же ядра ¹⁰⁹Ag сидят в основном внутри зерен. Поэтому плотность электронов $\rho_{\rm F}$ на ядре ^{109m}Ag отличается от плотности ρ_A на ядре ¹⁰⁹Ag, и возникает сдвиг $\omega_{\rm E} - \omega_{\rm A}$ между частотами испускания и поглощения. Этот сдвиг из-за различий в предыстории ядер Е и А имеет ту же физическую основу, что и изомерный сдвиг [10, 11], именуемый также монопольным или химическим. Представим этот сдвиг в безразмерной форме $\delta = (\omega_{\rm E} - \omega_{\rm A}) \tau$. Тогда из уравнения (14) в [8] получаем

$$\delta = C(\rho_{\rm E} - \omega_{\rm A})a_0^3,\tag{1}$$

где $C = 6.2 \cdot 10^7 Z((r_+ - r_-)/r)(r^2/fm^2)\tau c^{-1}$; $r = (r_+ + r_-)/2$; r_+ , r_- – радиусы ядра в верхнем ("+") и нижнем ("–") состояниях; Z – заряд ядра; a_0 – радиус Бора. Для ¹⁰⁹ Ад $C > 3 \cdot 10^{10}$.

2. Эффективное сечение. В работе [5] источник – плоскопараллельная пластина толщины d. Рассмотрим резонансное поглощение квантов, летящих к детектору по лучу OZ. Начало O луча OZ поместим на стороне пластины, наиболее удаленной от детектора, т.е. на ее тыльной стороне. Центр входного окна детектора обозначим через O', а линию ОО' назовем линией наблюдения. Сначала рассмотрим простой случай, когда направления луча OZ, линии наблюдения OO' и нормали к пластине ON совпадают. На ОZ отметим точку z с излучающим ядром E и точку z' с поглощающим ядром A. При этом 0 < z < z' < d. На лицевой стороне пластины, обращенной к детектору, z = z' = d. На тыльной стороне пластины z = z' = 0. Луч OZ наклонен под углом θ к горизонтальной плоскости. В работе [5] угол θ меняли, наклоняя платформу, с которой жестко скреплены источник и детектор. При $\theta > 0$ квант поднимается, при $\theta < 0$ опускается. Пусть при испускании кванты распределены по частоте ω по Лоренцу: $F_E(\omega) = 1/[1 + ((\omega - \omega_E)2/\Gamma_E)^2]$, где ω_E – частота в максимуме линии испускания, Γ_E – полная ширина линии на ее полувысоте при $|\omega - \omega_E| = \Gamma_E/2$. Пройдя из точки z в точку z', фотон поднимется при $\theta > 0$ на высоту $(z' - z) \sin \theta$, уменьшив частоту ω на гравитационный сдвиг:

$$\Omega_G = G(z' - z)\sin\theta,\tag{2}$$

где $G = \omega g/c^2$; g – ускорение свободного падения. Поскольку в точке z' частота кванта, пришедшего из точки z, равна $\omega' = \omega - \Omega_G$, то сечение резонансных потерь квантов ω' на ядре A есть

$$\sigma_A(\omega') = \sigma_A(\omega - \Omega_G) = \sigma_{mA} / [1 + ((\omega - \Omega_G - \omega_A)2/\Gamma_A)^2],$$
(3)

где $\sigma_{mA} = \sigma_m/k_A$ – сечение при $\omega' = \omega_A$; Γ_A – ширина линии поглощения на ее полувысоте; $k_A = \Gamma_A \tau_+$ относительная полная ширина линии поглощения; τ_{+} – время жизни верхнего уровня; τ_{-} – время жизни нижнего уровня; если нижний уровень стабилен, то τ_+ часто обозначают как τ ; $\sigma_m = \sigma_w w f' / (1 + \alpha_t)$; $\sigma_w = (\lambda^2/2\pi)[(2I_+ + 1)/(2I_- + 1)]$ – волновое сечение; І₊, І₋ – спины ядра в верхнем "+" и нижнем "-" состояниях; λ – длина волны; α_t – полный коэффициент внутренней электронной конверсии; w = $= p_{+-}\tau_{+-} - \phi$ актор ветвления, т.е. отношение вероятности p_{+-} перехода $+ \Rightarrow - к$ сумме вероятностей всех переходов с уровня "+", равной 1/т₊. Для ¹⁰⁹Ад имеем $I_{+} = 7/2, I_{-} = 1/2, \lambda = 1.408 \cdot 10^{-9} \,\mathrm{см},$ $\alpha_t = 26.7, f' = 0.0535, w = 1.$ Поэтому $\sigma_m =$ $2.44 \cdot 10^{-21} \, \text{см}^2$. Введем теперь эффективное сечение поглощения:

$$\sigma_{\rm ef} = \int_{-\infty}^{\infty} \sigma_A(\omega') F_E(\omega) d\omega \Big/ \int_{-\infty}^{\infty} F_E(\omega) d\omega, \qquad (4)$$

где интервал усреднения $0 < \omega < \infty$ дополнен нефизическим интервалом $-\infty < \omega < 0$. Это вносит пренебрежимо малую ошибку, но упрощает вычисления. При этом

$$\sigma_{\rm ef} = (\sigma_m/kA)(1+\gamma)[(1-\gamma)^2+\Delta^2]/[4\gamma^2\Delta^2+(1-\gamma^2+\Delta^2)^2],$$
(5)
где $\gamma = \Gamma_E/\Gamma_A$; $\Delta = 2(\omega_E - \Omega_G - \omega_A)/\Gamma_A = 2(\delta - -\Omega_G \tau)/k_A$. Поскольку в опытах [5] химическое уши-
рение Γ_{ch} мало [8], т.е. $\Gamma_{ch} \ll E$, Γ_A , то $\Gamma_E \cong \Gamma_A$,
 $\gamma \cong 1$ и

$$\sigma_{\rm ef} \cong \sigma_{\rm ef_{\sim}} = (\sigma_m/2k_A)/[1 + ((\delta - \Omega_G \tau)/k_A)^2]. \quad (6)$$

Письма в ЖЭТФ том 104 вып. 3-4 2016

Ширина формы (6) в 2 раза больше ширин отдельно взятых форм (1), (3), как и должно быть.

3. Выход γ -квантов. В номинальных условиях (узкий пучок, линия наблюдения OO' совпадает с нормалью к пластине) выход γ -квантов из источника (на один γ -распад вдоль оси OZ в направлении на детектор), как и в [7] дается формулой

$$Y(k,\theta) = \int_{0}^{d} dz \rho_p(z) T_e(z) T_\gamma(z), \qquad (7)$$

где ρ_p – распределение родительских ядер ¹⁰⁹Cd; T_e и T_{γ} – факторы для квантов, рожденных в слое толщины dz с координатой z; $T_e = \exp[-\mu_e(d-z)]$; μ_e – коэффициент потерь на электронах; $T_e = 21.5 \text{ см}^{-1}$ для Ag; $T_{\gamma}(z) = T_{\text{rec}} + T_{\text{res}}$ – выход γ -кванта в сторону детектора без учета потерь на электронах: $T_{\text{res}} = f \exp(-Q'(z))$ – доля γ -квантов без отдачи с учетом резонансных потерь на ядрах; в опытах [5] $T_{\text{rec}} = 1 - f - доля$ квантов c отдачей. В итоге $T_{\gamma}(z) = T_{\text{rec}} + T_{\text{res}} = 1 - f + f \exp(-Q'(z))$, где Q'(z) – толщина резонансных потерь квантов, рожденных в точке z. Используя (6), получаем

$$Q'(z) = n_{109} \int\limits_Z^d \sigma_{
m ef\sim}(z',z) dz' =$$

$$= (Q_{\#}/\sin\theta) [\arctan(Arg_0) + \arctan(Arg_1)], \quad (8)$$

где $Arg_0 = \delta/k$; $Arg_1 = [-\delta + G(d-z)\sin\theta]/k$, $Q_{\#} = \sigma_m n_{109}/2G = 4.20 \cdot 10^{-3}$, т.к. $\sigma_m = 2.44 \cdot 10^{-21} \text{ см}^2$, $n_{109} = 2.85 \cdot 10^{22} \text{ см}^{-3}$ – плотность числа ядер ¹⁰⁹ Ад в природном серебре, $G = 1/h_0 = 0.827 \cdot 10^4 \text{ см}^{-1}$. При $\theta = 0$ разложение в ряд Тейлора дает

$$Q'(z,\theta=0) = (\sigma_m/2k)n_{109}(d-z)/[1+(\delta/k)^2].$$
 (9)

4. Усреднение по лучам пучка. Геометрия γ пучка задается размерами пластины (высота $d_1 =$ = 1.6 см, ширина $d_2 = 2.4$ см), детектора (те же d_1 и d_2) и расстоянием $|OO'| = d_3 = 24.0$ см. Введем оси Декарта: ON – по нормали к пластине, OX – вдоль ее ширины и OY – вдоль высоты, начало O – в центре тыльной стороны. Пучок – это множество узких лучей OZ, задаваемых на множестве пар углов φ , φ_1 . Повернем плоскость NOX вокруг OX на угол φ в позицию N'OX. Плоскость NOY повернем вокруг OY на φ_1 в позицию N''OY. Тогда луч OZлежит на пересечении плоскостей N'OX и N''OY. Введем еще углы φ_0 , β с осью OX и φ_{10} , β_1 с осью OY. Наложим условия – $\varphi_0 - \beta < \varphi < \varphi_0 - \beta$, $-\varphi_{10} - \beta_1 < \varphi_1 < \varphi_{10} - \beta_1$, где $\varphi_0 = d_1/2d_3 =$

Письма в ЖЭТФ том 104 вып. 3-4 2016

0.033 рад, $\varphi_{10} = d_2/2d_3 = 0.05$ рад – угловые размеры пучка, β , β_1 дают отклонение линии OO' от нормали NO. Если $|\beta|$, $|\beta_1|$, φ_0 , $\varphi_{10} \ll 1$, то усреднение γ -выхода по z, φ , φ_1 имеет вид

$$Y_{av}(k,\theta) =$$

$$= \int_{-\varphi_0-\beta}^{\varphi_0-\beta} (d\varphi/2\varphi_0) \int_{-\varphi_{10}-\beta_1}^{\varphi_{10}-\beta_1} (d\varphi_1/2\varphi_{10}) \int_{0}^{d} \rho_p T_e T_\gamma d_z.$$
(10)

Факторы ρ_p , T_e , T_γ в (10) по смыслу те же, что и в (7)–(9): $\rho_p = (\exp(-b(d-z)^2) + \exp(-bz^2))/\int_0^d [\exp(-b(d-z)^2) + \exp(-bz^2)]dz;$ $b = 636 \text{ см}^{-2}$ – параметр диффузии; d = 0.074 см – толщина пластины, $T_e = \exp[-\mu_e(d-z)U];$ $U = [1 + \tan^2(\varphi + \beta) + \tan^2(\varphi_1 + \beta_1)]^{1/2};$ $T_\gamma = 1 - f + f \exp(-UQ'); \mathbf{Q}'(\mathbf{z}) = (Q_\#/\sin(\theta + \varphi + \beta))[\arctan(arg_0) + \arctan(arg_1)];$ где $arg_0 = \delta/k;$ $arg_1 = [-\delta + G(d-z)\sin(\theta + \varphi + \beta)]/k$. Таково обобщение формул (6)–(9).

Для простоты берем $\beta = \beta_1 = 0$, тогда $U = [1 + \tan^2 \varphi + \tan^2 \varphi_1]^{1/2}; \mathbf{Q}'(\mathbf{z}) =$ $= (Q_{\#}/\sin(\theta + \varphi))[\arctan(arg_0) + \arctan(arg_1)];$ где $arg_0 = \delta/k; arg_1 = [-\delta + G(d-z)\sin(\theta + \varphi)]/k.$

5. Первичные данные. В работе [5] найдены числа отсчета квантов $N(T, \psi, \theta)$ в зависимости от температуры источника T (4.2 и 295 K), угла ψ между волновым вектором и магнитным полем Земли (два значения: ψ_A и ψ_B), угла θ между осью OO'и горизонтальной плоскостью (11 значений θ : 7°, 3°, $1^{\circ}, 0.67^{\circ}, 0.33^{\circ}, 0^{\circ}, -0.33^{\circ}, -0.67^{\circ}, -1^{\circ}, -3^{\circ}, -7^{\circ}).$ Все числа $N(T, \psi, \theta)$ измерены на одинаковых интервалах времени строго по 750 с. Анализ этих данных показал [7]: 1) средневзвешенные (ср. взв.) от чисел $N(\psi, \theta)$ по всем θ в фазах A и B равны с точностью $\sim 1/3$ стандартной ошибки, что является признаком коллапса СТС; 2) так называемые скорректированные числа $N_{\rm Cr}(\psi,\theta) = N(\psi,\theta)Y(k=\infty)/Y(\psi,\theta,k),$ соответствующие отсутствию резонанса, не должны зависеть от ψ и θ , если нет никаких ошибок, в том числе верно определена ширина k. Тогда ср. взв. (по всем θ) числа $N_{\rm Cr}(\psi, \theta)$ в фазах A и B должны быть равны, что с точностью до $\sim 1/10$ стандартной ошибки подтверждено в [7]. Это еще один признак коллапса СТС. А для модели [5] с разрешенной ("resolved") СТС ср. взв. по θ от $N_{\rm Cr}(\psi_A, \theta)$ и $N_{\rm Cr}(\psi_B, \theta)$ различаются на ~4 стандартных ошибки, что опровергает гипотезу [5] о разрешенности СТС. 3) Обнаружена систематическая ошибка в данных для фазы В (ток выключен). Учтя 1)-3), считаем СТС неразрешен-

Таблица 1. Данные опытов [5] при 4.2 К, когда ток в кольцах Гельмгольца включен; n_i – число измерений при угле θ_i ; N_i – среднее число γ -отсчетов на одно измерение при угле θ_i ; $\varepsilon_i = (N_i/n_i)^{1/2}$ – теоретическая среднеквадратичная (ср. кв.) ошибка для N_i

i	-5	-4	-3	-2	-1	0	1	2	$3^{(*)}$	4	5
$ heta_i$	$+7^{\circ}$	$+3^{\circ}$	$+1^{\circ}$	$+0.67^{\circ}$	$+0.33^{\circ}$	0°	-0.33°	-0.67°	-1°	-3°	-7°
N_i	112834	112788	112813	112646	112735	112737	112690	112808	112772	112906	112919
n_i	24	26	27	26	26	51	26	25	24	24	19
$\varepsilon_i **)$	69	66	65	66	66	47	66	68	69	69	78

*) В [7] замечена опечатка в числе N_3 . Неверно 112742, верно 112772.

**) Более корректно было бы заменить $\varepsilon_i = (N_i/n_i)^{1/2}$ на $\varepsilon_i = (\Sigma_j(N_{ij} - N_i)^2/(n_i - 1))^{1/2}$; где N_{ij} – число γ -отсчетов на отрезке измерения с двойным номером ij, где $j = 1, 2, ..., n_i$ при $\theta = \theta_i$; $N_i = \Sigma_j N_{ij}/n_i$. В [5] каждый отрезок измерения Δt_{ij} длился точно 750 с.

ной, а для расчетов берем из [5] данные лишь для фазы A (ток включен), помещенные в табл. 1.

6. Функционал χ^2 . Он зависит от m' параметров {...}. Параметры $k, \delta, \beta, \beta_1$ могут быть найдены минимизацией χ^2 . Минимум для χ^2 ищется как в [7]:

$$\min \chi^2 = \min_{\{\dots\}} \min_C \Sigma_i [(N_i - CY_i)/\varepsilon_i]^2/M =$$
$$= \min_{\{\dots\}} \Sigma_i [(N_i - C_m Y_i)/\varepsilon_i]^2/M.$$
(11)

Здесь $Y_i = Y_{av}(\theta_i; \{...\}) - \gamma$ -выход (по теории) при угле θ и параметрах $\{...\}, C$ – подгоночный параметр; M = m - l – число степеней свободы [12]; m – число членов в сумме Σ_i ; l = m' + 1 – число связей. Минимум χ^2 по C дает $C = C_m = (\Sigma_i N_i Y_i / \varepsilon_i^2) / \Sigma_i (Y_i / \varepsilon_i)^2$. Такова одна связь. Другие m' неявных связей дает минимизация по m' параметрам.

7. Путь к исключению систематических ошибок. При числе искомых параметров гравитационного спектра более двух возрастает роль даже малых систематических ошибок. Для их исключения будем периодически обращать фактор Мессбауэра f в ноль, например, импульсами гиперзвука или ультразвука. Тогда сравнение γ -отсчетов при $f \neq 0$ и f = 0 исключит многие систематические ошибки. Ультразвук (u-звук) частоты $\nu_{\rm us} \sim 10^9 - 10^{12} \, \Gamma$ ц подавит фактор f, если u-звук создаст смещения ξ ядра вдоль γ -волнового вектора ${\bf K}$ со средним квадратом $\langle \xi^2 \rangle_{\rm us} > 10^{-17} \, {\rm cm}^2$. Тогда, см. [13], f < $\exp(-|K|^2 \langle \xi^2 \rangle_{\rm us}) < 10^{-5}$. Источники *u*-звука – это пьезокристаллы, пьезокерамики и магнитострикционные материалы в электрических или магнитных полях частоты *ν*. Через медный кулер (рис. 1) *и*-звук попадает в *ү*-источник. Налагая и снимая *и*-звук при $4.2 \,\mathrm{K} \,\gamma$ -источника, можно поочередно иметь то f = 0, то f = 0.05. Учтя это, разобьем отрезок Δt_{ij} (см. примечание **) к табл. 1) на 2*p* участков одинаковой длительности. Занумеруем участки в порядке хода времени. Пусть на нечетных участках f > 0, а на четных f = 0. Тогда сумма γ -отсчетов по нечетным участкам отрезка ij есть $N_{ij} = C_{\gamma ij}C_{rij}Y_i$, где $C_{\gamma ij}$ – число γ -квантов, рожденных на нечетных участках, C_{rij} – средняя на этих участках эффективность регистрации γ -квантов. Но $T_{\gamma} = 1$ при f = 0, и из (10) имеем $Y_i = Y^*$, где Y^* не зависит от индекса i. Поэтому сумма отсчетов на четных участках отрезка ijесть $N'_{ij} = C'_{\gamma ij}C'_{rij}Y^*$. Здесь факторы $C'_{\gamma ij}$, C'_{rij} имеют тот же смысл, что и $C_{\gamma ij}$, C_{rij} , но относятся к четным участкам. Чем чаще чередуются четные и нечетные участки, т.е. чем больше p, тем меньше различие между $C_{\gamma ij}C_{rij}$ и $C'_{\gamma ij}C'_{rij}$. Тогда в пределе больших p имеем $N_{ij}/N'_{ij} = (C_{\gamma ij}C_{rij}Y_i)/(C'_{\gamma ij}C'r_{ij}Y^*) =$ Y_i/Y^* . Введем числа $\nu_{ij} = N_{ij}/N'_{ij}$, их средние $\nu_i = \Sigma_j \nu_{ij}/n_i$, среднеквадратические (ср.кв.) разбросы $\varepsilon_{*i} = (\Sigma_j (\nu_{ij} - \nu_i)^2/(n_i - 1))^{1/2}$ и функционал

$$\chi^{*2}\{\ldots\} = \sum_{i} [(\nu_{i} - EY_{i}/Y^{*})/\varepsilon_{*i}]^{2}/M.$$
(12)

В минимуме χ^{*2} имеем $E = E^* = Y^*(\Sigma_i \nu_i Y_i / \varepsilon_{*i}^2) / \Sigma_i (Y_i / \varepsilon_{*i})^2$. В идеале должно быть $E^* = 1$. Причиной отличия E^* от $E^* = 1$ могут быть многие недостатки: неверный расчет выходов $Y^*, Y_i = Y_{av}(\theta_i; \{...\})$, малость числа измерений n_i , неудачная модель ЕСС, отличие пробного набора параметров $k, \gamma, \delta, \ldots$ от реальности и систематические опшбки. Так возникают: χ^{*2} – критерий, т.е. условие минимума χ^{*2} по $\{...\}, E$, и E^* – критерий, т.е. условие близости E^* к единице для набора $\{...\}_{min}$, минимизирующего χ^{*2} . Этот двойной критерий позволит выявлять недостатки и, благодаря этому, корректировать отладку опытов.

Следует, однако, учесть, что фактор f не определен в небольших зонах стыка нечетных и четных участков. Зоны стыка необходимо вырезать из γ регистрации. Участки без зон стыка назовем активными. Поскольку включать–выключать u-звук можно на порядки быстрей, чем менять температуру γ источника от 4.2 до 295 К и обратно, то необходимо автоматическое выполнение опытов. Тогда будет легко вырезать зоны стыка и соблюдать строгое ра-

1	Cu Ag 2 3 4.2 K	γ 4	5
---	-----------------------	--------	---

Рис. 1. Схема *и*-звуковой модуляции фактора *f*. 1 – источник *и*-звука; 2 – кулер; 3 – γ -источник; 4 – γ -пучок; 5 – детектор. Все элементы жестко скреплены с несущей платформой

венство длительностей нечетных и четных активных участков.

8. Результаты и выводы. Критерий χ^2 при $k_E \cong k_A \cong k$ по данным табл. 1 дает $k \cong 13.3, \delta \cong 4.5$, т.е. $\Gamma \cong 0.23 \,\mathrm{c}^{-1} = 0.037 \,\mathrm{\Gamma}$ ц, $\omega_E - \omega_A \cong 0.079 \,\mathrm{c}^{-1} = 0.013 \,\mathrm{\Gamma}$ ц. Отсюда следует ряд выводов.

1. Поскольку δ – это сдвиг между частотами ядер на границе и внутри зерна, т.е. в максимально разных условиях, то модули сдвигов между ядрами только внутри зерна ($|\delta_{in}|$) или между ядрами только в зоне его границы ($|\delta_b|$), должны быть много меньше, чем $|\delta|$, т.е. $|\delta_{in}|$, $|\delta_b| \ll 4.5$, т.е. $|\delta_{in}|$, $|\delta_b| \sim 0.1 - 1$. Но $|\delta_{in}| \sim |\delta_b| \sim k_{ch}$, где k_{ch} – химическое (монопольное, изомерное) уширение. Таким образом экспериментально подтвержден эффект естественного сильного подавления (ЕСП) монопольного уширения, выявленного в [8] (см. там (15)). ЕСП играет важную роль в теории создания γ -лазера (см., например, ссылки в [8]).

2. С учетом δ ширина $k \approx 13.3$ заметно меньше, чем $k = k_{\exp} \approx 15.3$ в [7], найденная без учета δ . Поскольку $k_{ch} = k - (1 + k_{dec} + k_D + ...)$ [8], то при учете δ оценка k_{ch} меньше, а ЕСП сильнее.

3. Для больших времен жизни τ' возможна качественная оценка сдвига $|\delta'| \sim |\omega_{\rm E} - \omega_{\rm A}|\tau' \sim ~ |\delta|\tau'/\tau \sim 5\tau'/\tau$, считая, что порядок величины $|\omega_{\rm E} - \omega_{\rm A}|$ примерно одинаков для всех изомеров. Так, $|\delta'| \sim 500$ для ¹⁰³Rh, и наблюдение ЕСС затруднено, т.к. толщина γ -резонансных потерь подавлена в $\sim [1 + (\delta'/k')^2] \sim 10^3$ раз (см. (9)). Другая трудность – уширение диффузией [8].

4. Так как $\delta \simeq 4.5 > 0$, то из (1) имеем ($\rho_{\rm E} - \rho_{\rm A}$) $a_0^3 = \delta/C < 5 \cdot 10^{-11}$, и $\rho_{\rm E} > \rho_{\rm A}$. Это согласуется с тем, что связь атома с решеткой, оттягивающая электроны от ядра, несколько слабее на границе зерен, чем внутри. При этом изменение электронной плотности на ядре ¹⁰⁹ Ад между его положениями на границе ($\rho_{\rm E}$) и внутри ($\rho_{\rm A}$) зерен ничтожно мало в сравнении с плотностью всех *s*-электронов ρ_s . Так как $\rho_s \sim 5 \cdot 10^5/a_0^3$, см. [11], то ($\rho_{\rm E} - \rho_{\rm A}$)/ $\rho_{5s} < 10^{-16}$.

5. Столь высокую (< 10^{-16}) чувствительность опытов с ЕСС можно усилить, чтобы выявлять еще более тонкие эффекты, чем сдвиг $\omega_{\rm E} - \omega_{\rm A}$. Для этого, а также для увеличения числа искомых параметров гравитационного спектра, нужно альтернировать фактор f. Это позволит, применяя двойной критерий (χ^{*2}, E^*), исключать систематические ошибки.

Автор признателен проф. В.Л. Бугаенко (ИТЭФ) за консультации по Фортрану и проф. А.В. Давыдову (ИТЭФ) за замечания к работам [6–8], в том числе за указание опечатки в разделе 6 статьи [8]: напечатано 102 Rh, а надо 103 Rh.

- R.V. Pound, Mössbauer Spectroscopy II, ed. by U. Gonser, Shpringer, Berlin (1981).
- W. Wildner and U. Gonser, J. de Phys. Coll. Suppl. 40, 2 (1979).
- S. Rezaie-Serej, G.R. Hoy, and R.D. Taylor, Laser Physics 5, 240 (1995).
- V. G. Alpatov, Yu. D. Bayukov, A. V. Davydov, Yu. N. Isaev, G. R. Kartashov, M. M. Korotkov, and V. V. Migachev, Laser Phys. **17**, 1067 (2007).
- Ю. Д. Баюков, А. В. Давыдов, Ю. Н. Исаев, Г. Р. Карташов, М. М. Коротков, В. В. Мигачев, Письма в ЖЭТФ **90**(7), 547 (2009).
- 6. С. В. Карягин, Письма в ЖЭТФ **98**(3), 197 (2013).
- 7. С.В. Карягин, Письма в ЖЭТФ **98**(11), 763 (2013).
- 8. С. В. Карягин, Письма в ЖЭТФ **103**(3), 233 (2016).
- А.В. Давыдов, Ю.Н. Исаев, В.М. Самойлов, Изв. РАН, сер. Физ. 61, 2221 (1997).
- В. И. Гольданский, Эффект Мессбауэра и его применения в химии, Институт химической физики, изд. АН СССР, М. (1963).
- Mössbauer Spectroscopy, ed. by D.P.E. Dickson and F.J. Berry, Cambridge University Press, Cambridge, London, N.Y., New Rochelle, Melburne, Sydney (1986).
- 12. Дж. Тейлор, Введение в теорию ошибок, Мир, М. (1985).
- В. Г. Шапиро, В. С. Шпинель, ЖЭТФ 46, 1960 (1964).