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An internal effective magnetic field is shown to affect an electron when moving
in a valley of a silicon-like crystal in the presence of a random static potential.
The phase relaxation due to the scattering by a randomly inhomogeneous effective
magnetic field is considered.

Suppose the electron spectrum in crystal to have several degenerate extrema
being located inside the Brillouin zone (not on its boundary). Let the interval-
ley scattering by a random static potential be weak compared to the intravalley
one. In this Letter, we should like to call attention to the existence of an effec-
tive magnetic field with which an electron interacts when diffusing inside one of
the valleys. It is convenient to elucidate the gist by considering inhomogeneities
smooth on the scale of a wavelength. Then, the point is that the position in
E—space of the band extremum is not the same in different regions of crystal.
Really, provided the wave vector ko defining the bottom of the valley is depen-
dent on 7, the function (—he/ e)Eo(F) plays the role of a vector potential, while
(—hc/e)rotky(7) of a magnetic field. Notice the idea of existing of an effective
magnetic field due to the spatial variation of Ko has been stated by Kroemer 1
yet many years ago as applied to a rather similar object, a solid solution with
smoothly varying chemical composition.

Thus, corresponding to each valley is its own magnetic field. By time sym-
metry, the fields of valleys which differ in ko sign are opposite in direction. We
consider the action of an effective magnetic field caused by a random electric field
or a random lattice deformation and fluctuating in space on a scale much less
the mean free path. Typically, the time of inter- valley transitions in degenerate
semiconductors with multiply connected Fermi surface at low temperatures is far
larger than the momentum relaxation time, it is assumed in what follows.

For definiteness, we mean a crystal of silicon whose conduction band consists
of six valleys being located on axes of [100] type, value of ko being ~ 0,85-2x/a,
a denotes a lattice constant. Existence of an effective magnetic field implies the
linear in the wave vector k, counted off the valley bottom, term Hy in the band
Hamiltonian
h
2

Hy = —(F(7) + 9(F)F).
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The relationship between the velocity 7 and the electric field E, not ton sharply
inhomogeneous, may be established by making use of kp theary to fourth order.
It 1s given by
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with three constants of an ”atomic” scale: a and independent comnonents 8y and
By of a tensor B of rank twoll. The first term in {1) is available only in regions
with nonzero charge density. By choosing z-axis along kq
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Tt is seen, a magnetic field does exist in a plane perpendicular to kq.

The crystal lattice being inhomogeneously distorted. an effective magnetic
field appears in the second order of the perturbation theorv by simultaneous tak-
ing account of k‘p-term and deformation potential. By symmetry, the connection
between ¢ and strain tensor ¢ is similar to (1)} with changing 8F;/dz; < ¢y
v, = o/'Spe + Bl€rz, vz == Byers, vy = Paey,. Note z-comnonent of a magnetic
ﬁeld does exist under deformation but only under that is attended with rotation
providing du,/dy - 81L,,/8:2' # 0, i being the displacement vectort). " However
nontrivial it is, constants o', 81, G} should be determined spectrosconically by
the valleys minima shift w:th an external stress. In silicon, the proximity of lco
to the Brillouin zone boundary furthers an indirect measurement of this shift. In
the presence of nondiagonal strain component ¢,,, the electron %pectrum contains
the term A%k, (k, + ko — 2w /a)/2m,, with an effective mass m,, o« €}, If ko 1s
close to 27/a, it is the same term that gives rise to the shift of the minimum
along = at k; == 0, so that 8} = k{ko — 2x/a)/2m..¢,,. The value of m., may be
extracted from the variation of the cyclotron mass at the band edee vs. uniaxial
stress orientation. (Such a dependence has been obtained in Ref.*. but the mea-
surements accuracy was not enough for orientation being of interest to us.) The
difference kg — 27/a is expressed in terms of the longitudinal mass my and the
velocity vy which defines the linear in k. splitting hva(k, - 27 /4% of the spectrum
near the Brillouin zone boundery, ko = 2r/a — mytn/h. Thus. knowladaze my and
vg as functions of Spe and ¢, will enable us to find constants o and 2, {see 2 for
rough estimation).

In weak localization range, the interference phenomena are caused by a spa-
tial coherency of waves passing the loop of the diffusion trajectory in opposite
directions 2. As temperature decreases, even wesak interactions which do not
preserve this coherency manifest themselves. An electron being scattered by a

D Given the crystal having no inversion svmmetry, an interaction similar to apin-orbit one
with ko substituting for the spin vector should exist.

214 js interesting that the Burgers dislocation oriented along ko induces the magnetic field
just the same as the solenoid does. Being zero evervwhere excent for the disiocation axis such
a fleld is responsible for the Aharonov - Bohm effect.
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random magnetic field, the amplitude f(El, 1;2) of k; — k; transition is not equal
to f(- kg, - k1), which breaks coherency. Within the Born approximation

flky, ko) = - %(h + k2)Vg g

v; _i, being the Fourier transform of the velocity v(r), m the density of states
mass. Then, amplitudes f(k;,kz) and f(—Eg,—El) differ in sign only. On this
account, the phase relaxation time 1y is simply half the reciprocal probability
of scattering by a random magnetic field, ry being supposed much larger the
free path time. Let us evaluate 7y in heavily doped semiconductors deep in the
metallic range where the Fourier component of the electric field correlator has
a form < E;Ej >p= 1672 nelk;k; /(k? + r;2)?k?, here n is the charged impurity
concentration, r, the screening radius, k dielectric constant. Note should be
taken, a dispersion law being anisotropic, the momentum relaxation time depends
on a momentum orientation, however, 7y is got by averaging over wave vectors
both of final states and of initial ones. In this way

1 643 ne? m,

= _ L g?
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where is the density of states with the Fermi energy er (allowing for one spin
projection). It has been taken into account that an effective mass m) along [100]
in silicon is much larger than that m of transverse motion (ratio of o, §1 and B2
was kept arbitrary). Notice an absence of Coulomb divergence when evaluating
7m, for which reason r, = co has been put. The rate of phase relaxation increases
rapidly with doping level (r;1oon?). The intervalley transition time and 7, may
be of any ratio, depending as they do on a potential core strength and interband
energy distances. Similarly, for the scattering in a magnetic field caused by short-
range distortions (whose correlation radius is less than the Fermi wavelength),

1 4r
— = gzermerd, d=(di+ 2d;) (3’ 2 4+ 2d'B)) + di1By % + 2—d 305 2
M

with dj 23 : identifying the correlators of strain fields:

< €rz€zrx >p= dl, < ezzeuy >e= d2’ < ezvezv > d3.
k k k

In n-type Si-MOS structure with (100) surface, two dimensional electron gas
occupies two lowest lying equivalent valleys oriented normal to the boundary
plane. In this geometry, an effective magnetic field arises from the lattice de-
formation only. Therefore, the phase relaxation time in high-quality Si(100)
structures may be much larger than with another surface orientation.

Thus, the interference phenomena are determined by three characteristic
times: phase relaxation time rg associated with inelastic processes, intervalley
transition time 7, and 7y. If 7, 3> 7y , an experimentally measured phase break-
ing time (rg ! + r71)71) , rising with temperature decreasing, should tend to
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saturation at the value of 7., . Of course, an effective magnetic field, destroying
the Cooperon attributed to one valley, does not affect the Cooperon constructed
with wave functions of different valleys in a symmetrical way. Hence, at lowest
temperatures, g coming larger 7y , it is the symmetrized Cooperon that gov-
erns interference phenomena. In the opposite case 7, < 7y, though an electron
changes many times valleys differing in ¥(7) sign in time ry, the expression for
r.. does remain the same (if the space fluctuations of a magnetic field be smooth
enough, it will not be the case). Note that the decay of the Cooperon due to
the intervalley transitions takes place only because of the nonequivalency of dif-
ferently oriented valleys. If the symmetry of the valleys were the same (and 7}
were neglected, see below) the intervalley scattering would not manifest itself
at all. Correspondingly, when considering the total Cooperon time evolution in
Ref.*, only the number of nonequivalent valleys should be of importance. Notice
the statement of Ref.5 about the destroying action of intervalley transitions in
Si(100)-MOS structure is at variance with that above. The point is the pro-
cesses of multiple intervalley scattering which are finished in the same valley as
the electron waves started from have not been taken into account in 5. To take
an example, the expression for the Cooperon which describes the interference in
two equivalent valleys (in Si-MOSFET or uniaxially strained bulk Si, e.g.) is
proportional to the sum

1 1 1 1

+ U S
4+l z+mlt2gl oz oz+2n!

where z = QDQ + rEl, Q being the Cooperon momentum, D the diffusion
coefficient. Provided r, > 7 (and z > (mury)”'/?), this sum is reduced to
2/(z + r31), the temperature dependence being cut off at 78 ~ . If 7y < 7,
then it turns into (z + r7!)~! + z~! and half of the Cooperon retains the pole
form.

I am grateful to Aronov A.G., Pikus G.E. and Spivak B.Z. for interesting
discussions.
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