Температурная зависимость критического тока пленок YBa₂Cu₃O_{7-δ}

А. В. Кузнецов¹⁾, И. И. Санников, А. А. Иванов, А. П. Менушенков

Национальный исследовательский ядерный университет "МИФИ", 115409 Москва, Россия

Поступила в редакцию 29 июня 2017 г. После переработки 4 августа 2017 г.

Экспериментально исследована температурная зависимость критического тока пленок $YBa_2Cu_3O_{7-\delta}$. Проведенный анализ позволил выделить две компоненты критического тока, обусловленные пиннингом вихрей на дефектах в объеме сверхпроводника и кислородных вакансиях в CuO_2 -плоскостях. Установленные температурные зависимости компонент позволяют корректно описать поведение полного критического тока в исследованном диапазоне температур от 4.2 K до температуры необратимости.

DOI: 10.7868/S0370274X17170088

1. Введение. Пленки высокотемпературного сверхпроводника (ВТСП) УВа₂Си₃О_{7-δ} (УВСО) характеризуются высокой плотностью критического тока (криттока) J, обусловленной пиннингом вихрей на многочисленных структурных дефектах, таких как кислородные вакансии, дислокации, межкристаллитные и двойниковые границы, включения вторичных фаз и т.д. [1]. Из-за различных сочетаний разных типов дефектов, температурное поведение криттока пленок может существенно изменяться от образца к образцу, что сильно осложняет анализ экспериментальных данных. Для каждого типа дефектов разработаны модели пиннинга [2-7], но общая теория, учитывающая их совокупное влияние на вихревую систему, которая могла бы дать единый подход к описанию зависимости J(T), пока отсутствует. Расчеты, проведенные Овчинниковым и Ивлевым [3], показали, что критток слоистого сверхпроводника, содержащего дефекты как в сверхпроводящих плоскостях, так и в объеме, имеет две независимые компоненты $J = J_1 + J_2$, обусловленные пиннингом в плоскостях (J₁) и объемным пиннингом (J₂). Полученные выражения связывают компоненты криттока с силами пиннинга, температурное поведение которых неизвестно, что делает невозможным непосредственное сравнение результатов расчета с экспериментальными данными.

С ростом температуры тепловые флуктуации подавляют пиннинг при температуре необратимости T_i раньше разрушения сверхпроводимости при критической температуре T_c [2, 4, 5, 8]. В диапазоне между T_c и T_i сверхпроводник находится в обратимом по магнитному полю и температуре смешанном состоянии. Ниже T_i реализуется неравновесное необратимое критическое состояние, в котором флуктуации вызывают термоактивированное перераспределение вихрей между центрами пиннинга, ведущее к релаксации криттока со временем [9]. В пленках YBCO температура необратимости может существенно отличаться от критической [8]. В работах [10, 11] в приближении максимальной энтропии для криттока получена зависимость

$$J = J(0)(1 - T/T_i)^{\alpha},$$
 (1)

где показатель степени α определяется совокупностью всех дефектов в сверхпроводнике.

Зависимость (1) с $\alpha \simeq 1-2$ описывает поведение криттока пленок YBCO при высоких температурах $T \gtrsim 20 \,\mathrm{K}$ [10, 11].

В эмпирическом описании криттока пленок YBCO можно выделить несколько подходов. Первый основан на наблюдающемся в диапазоне 10 K $\leq T \leq 50-60$ K квазиэкспоненциальном поведении $J \propto \exp(-T/T_0)$, которое связывается с присутствием центров пиннинга с характерной энергией $T_0 = 17-32$ K [12–15]. Использование двух компонент $J = J_w \exp(-T/T_w) + J_s \exp\left[-3(T/T_s)^2\right]$, объясняемых наличием центров слабого, $T_w = 8-13$ K, и сильного, $T_s = 78-93$ K, пиннинга, позволяет повысить точность аппроксимации J(T) и расширить область применимости данного подхода до $T \leq 75$ K [16–18].

Основой второго подхода служат температурные зависимости глубины проникновения магнитного поля λ и длины когерентности ξ , определяющие температурное поведение параметров пиннинга. Исходя из зависимости Гинзбурга–Ландау $\lambda \propto \xi \propto (1-\tau)^{-1}$, где $\tau = T/T_c$, критток аппроксимируется набором

¹⁾e-mail: AVKuznetsov@mephi.ru

степенных функций $J \propto (1-\tau)^{\alpha}$ с разными показателями степени $\alpha \simeq 0.9$ –2.5 в разных диапазонах температур [19–22]. При более точном учете температурного изменения параметров $\lambda = \lambda_0/\sqrt{1-\tau^4}$ и $\xi = \xi_0 \sqrt{(1+\tau^2)/(1-\tau^2)}$ выше 40–50 К критток также аппроксимируется зависимостью $J \propto (1-\tau^2)^{\alpha}$ с $\alpha \gtrsim 1.2$ –1.5 [23, 24].

В третьем подходе [25, 26] ВТСП-пленки рассматриваются как джозефсоновская среда, образованная монокристаллическими нанодоменами, а критток трактуется как джозефсоновский ток с температурной зависимостью типа Амбегаокара–Баратова. Низкотемпературный рост тока связывается с наличием фаз, обедненных кислородом, которые становятся сверхпроводящими при $T_c^* \simeq (0.4-0.6)T_c$. Данный подход полностью игнорирует пиннинг вихрей, но варьирование параметров джозефсоновской связи, T_c^* и концентрации кислородно-дефицитных фаз позволяет описать критток ВТСП-пленок в наиболее широком температурном диапазоне T > 10 K [25, 26].

Перечисленные подходы аппроксимируют критток лишь в ограниченных диапазонах температур. В данной работе, анализируя экспериментальные данные на основе расчетов Овчинникова и Ивлева [3] и приближения максимальной энтропии [10], в измеряемом токе YBCO-пленок мы выделим компоненты, обусловленные пиннингом вихрей на дефектах в объеме сверхпроводника и кислородных вакансиях в CuO₂-плоскостях. Полученные температурные зависимости компонент позволяют с высокой точностью описать поведение полного тока в диапазоне от 4.2 K до T_i .

2. Образцы и методика эксперимента. Пленки YBCO выращивали методом лазерного напыления [27] с использованием KrF-эксимерного лазера на круглых монокристаллических подложках SrTiO₃ (100) диаметром D = 1.8-2.1 мм. Структурный анализ, выполненный на дифрактометре D8 Discover (Bruker), показал отсутствие вторичных фаз и высокое качество кристаллической структуры. Эпитаксиальные пленки толщиной d = 280-550 нм состояли из монокристаллических блоков размером 100-970 нм с осью с, ориентированной перпендикулярно плоскости пленок. Разориентация блоков не превышала 0.6°. Параметр решетки с изменялся в пределах 11.70–11.71 Å. В транспортных измерениях пленки демонстрировали сверхпроводящий переход шириной порядка 1 К с $T_{\rm c} = 90 - 90.5$ К (табл. 1).

Критток пленок определяли из измерений остаточной намагниченности — стандартного метода изучения зависимости J(T) [14, 21, 22, 25, 26, 28], описываемого следующей процедурой. Образец помещают

Таблица 1. Параметры пленок YBa₂Cu₃O_{7-δ}

#	$T_{\rm c}$	T_i	T_1	α	J^*	$J_1(0)$	$J_2(0)$
	(K)				(10^6 A/cm^2)		
Y1	90.0	84.5	5.8	1.16	14.5	8.0	7.8
Y2	90.0	88.0	5.9	1.12	12.3	4.1	8.9
Y3	90.5	86.7	5.8	1.33	9.1	1.0	8.8

*Значения J при температуре 4.2 К.

в магнитное поле Н достаточно сильное, чтобы сформировать однородное критическое состояние во всем его объеме. При этом градиент плотности вихрей направлен от центра к краю образца, а его магнитный момент M(T, H) определяется как температурой, так и величиной поля. Затем магнитное поле сбрасывают до нуля, часть вихрей покидает образец, градиент их плотности меняет направление на обратное и образец перемагничивается. При полном перемагничивании остаточный момент M(T,0) насыщается и его значение зависит только от температуры. Для круглой пленки оно равна $M = (\pi/24c)D^3 dJ$, где D и d – диаметр и толщина образца, а *с* – скорость света. Поле, в котором насыщается остаточный момент, оцениваемое как $H = (4\pi/c) J d$ [28], для пленки толщиной до 550 нм при плотности тока $J \lesssim 1.5 \cdot 10^7 \,\mathrm{A/cm^2}$ не превышает 2.1 кЭ. В наших экспериментах поле амплитудой до 2.1 кЭ создавали сверхпроводящим соленоидом, целиком разогревавшемся после вывода тока, чтобы сбросить поле, замороженное в проволоке. При всех температурах значение приложенного поля было достаточным, чтобы насытить остаточный момент образцов, при этом оно было существенно больше нижнего и много меньше верхнего критических полей YBCO.

Остаточный момент прецизионно измеряли методом СКВИД-магнитометрии на неподвижном образце [28–30] с использованием магнитометра оригинальной конструкции [28, 31]. При проведении таких измерений необходимо тщательно экранировать измерительную зону магнитометра от внешних полей, для чего использовалась длинная трубка из NbTi [28].

Измерения проводили следующим образом. Образец помещали в одну из приемных петель трансформатора потока магнитометра, где он отогревался выше T_c и охлаждался в нулевом поле до температуры измерения T_m . Перпендикулярно поверхности пленки прикладывали магнитное поле H, которое удерживалось в течение нескольких минут и сбрасывалось в нуль. Вместе со сбросом поля устанавливали нулевой отсчет магнитометра, образец отогревался со скоростью ~ 5 K/мин и регистрировали изменение его магнитного момента с температурой, как показано на рис. 1 справа. Пр
и $T>T_{\rm c}$ сверхпроводимость

Рис. 1. (Цветной онлайн) Изменение магнитного момента образца Y1 со временем и температурой. Слева: релаксация момента со временем после выключения магнитного поля при t = 0. Справа: изменение момента при нагреве от температуры измерения T_m до критической температуры. Верхняя (1) кривая снята непосредственно после вывода поля, нижняя (2) – после релаксации момента в течение часа. Смотри в тексте обозначения приведенных величин

разрушается и момент равен нулю, поэтому разность показаний магнитометра в начале и конце нагрева равна $M(T_m)$. После отогрева начинался новый цикл измерений.

Изменение магнитного момента при отогреве образца определяется уменьшением криттока и непрерывная кривая, регистрируемая при температурной развертке, в принципе, соответствует зависимости J(T). Однако при высокой скорости развертки и неидеальной тепловой связи образца и термометра, погрешность полученной таким образом зависимости может оказаться значительной, поэтому мы провели измерения по описанной выше процедуре для ряда стабилизированных температур T_m , погрешность определения которых не превышала нескольких сотых Кельвина.

Дополнительно была исследована скорость релаксации тока $R = -dJ/d \ln t$. Для этого после вывода поля сначала регистрируют изменение момента со временем $\delta M(t)$ (см. слева на рис. 1), а затем при отогреве измеряют значение релаксированного момента (см. справа на рис. 1). Зависимость момента от времени определяют как $M(t) = M_* + \delta M_* - \delta M(t)$, где M_* и δM_* – значения величин в конце релаксационных измерений. Скорость релаксации R вычисляют численным дифференцированием кривых J(t), измерявшихся в течение часа с шагом в одну секунду.

Стабильность температуры при проведении релаксационных измерений была не хуже 0.05 К. Значения величин $M(T_m)$, измеренных обоими способами (см. рис. 1), совпали с точностью ~1%.

3. Результаты и обсуждение. Измеренные температурные зависимости криттока, приведенные на рис. 2 для трех образцов, характерны для всех

Рис. 2. (Цветной онлайн) Зависимости J(T) пленок YBa₂Cu₃O_{7- δ}. Непрерывные линии – подгонка суммой зависимостей (1) и (2) с параметрами, представленными в табл. 1. На врезке в полулогарифмическом масштабе показано поведение функции J(T) при малых токах. Пунктирные линии – подгонка высокотемпературных данных зависимостью (1). Чтобы избежать наложения кривых, токи образцов Y2 и Y3 умножены на 2.5 и 0.25 соответственно

исследованных пленок. Сравнение с литературными данными показало, что в соответствующих диапазонах температур кривые хорошо аппроксимируются описанными во введении зависимостями J(T)[16, 19, 21–23], поэтому они отражают общее температурное поведение криттока пленок YBCO и могут быть использованы для его анализа. В высоких температурах кривые имеют небольшую положительную кривизну. Ниже 30 К у образца Y1 наблюдается резкий рост криттока и тенденция к его насыщению при $T \rightarrow 0$. Аналогичное поведение у образца Y2 выражено слабее, а у Y3 крутизна зависимости J(T) с температурой практически не меняется.

Температурные зависимости скорости релаксации представлены на рис. 3: R демонстрирует максимум при $T \simeq 12-20$ К и затем спадает до нуля при высоких температурах. Экстраполяция $T \to 0$ дает ненулевое значение $R \simeq 5 \cdot 10^4 \text{ A/cm}^2$, одинаковое для всех образцов, связанное с квантовым крипом вих-

Рис. 3. (Цветной онлайн) Зависимости R(T) и S(T) для пленок $YBa_2Cu_3O_{7-\delta}$. Пунктирные линии – экстраполяция R при $T \rightarrow 0$. Крестики – данные для монокристалла $YBa_2Cu_3O_{7-\delta}$ в диапазоне температур 0.1–0.9 К [32]. На врезке в логарифмическом масштабе показана зависимость R от $\ln(T_i/T)$. Чтобы избежать наложения кривых, скорости R образцов Y2 и Y3 поделены на 2 и 4. Прямые линии – подгонка $R \propto \ln^{\beta}(T_i/T)$. Значения T_i см. в табл. 1

рей [9]. Значения R у образцов Y1 и Y2 резко увеличиваются ниже 30 K, а положение максимума R(T)смещается в сторону более низких температур. При этом отчетливо наблюдается корреляция низкотемпературного роста криттока с увеличением амплитуды максимума R (см. рис. 2 и 3). Такая корреляция проявляется также в поведении нормированной скорости релаксации $S \equiv R/J$. Нормированная скорость релаксации образца УЗ растет с температурой, при $T \simeq 25~{
m K}$ выходит на плато и вновь растет при $T\gtrsim 65\,\mathrm{K}.$ У образцов Y1 и Y2 перед выходом на плато при $T \simeq 22 \,\mathrm{K}$ наблюдается пик S(T), амплитуда которого сильно увеличивается у образца У1. При низкой температуре величина S хорошо согласуется со скоростью релаксации, обусловленной квантовым крипом вихрей [32] (см. рис. 3).

Анализ высокотемпературного поведения *J* и *R* показал, что критток и скорость релаксации зануляются при температуре меньше критической, что

обусловлено сильным влиянием тепловых флуктуаций, разрушающих критическое состояние раньше разрушения сверхпроводимости [2, 4, 5, 8]. Как показано на рис. 4, кривые J(T) демонстрируют сте-

Рис. 4. (Цветной онлайн) Зависимость J от $1-T/T_i$ для пленок YBa₂Cu₃O_{7- δ}. Прямые линии – подгонка зависимостью (1) с параметрами T_i , α и $J_2(0)$, приведенными в табл. 1. Чтобы избежать наложения кривых, токи образцов Y1 и Y3 умножены на коэффициенты 0.5 и 2

пенную зависимость (1), а скорость релаксации изменяется как $R \propto \ln^{\beta}(T_i/T)$ (см. врезку рис. 3). Подгонка J(T) и R(T) указанными зависимостями с точностью ~ 0.5 К дает одинаковые значения температуры необратимости T_i . Как следует из табл. 1, хотя критические температуры образцов почти одинаковы, значения T_i значительно разнятся.

Отклонение измеряемого тока от зависимости (1) коррелирует с амплитудой пиков скорости релаксации. Например, зависимость (1) хорошо аппроксимирует критток образца УЗ практически во всем диапазоне температур, зависимость S(T) не имеет пика, а амплитуда максимума R минимальна. Напротив, критток образца Y1 отклоняется от (1) при температуре $T \simeq 35 \,\mathrm{K}$, ниже которой наблюдается быстрый рост J и R, а также пик S(T). Мы связываем рост криттока с появлением добавки, вызванной повышением эффективности пиннинга на кислородных вакансиях в CuO₂-плоскостях при низких температурах. Чтобы выделить эту добавку $J_1 = J - J_2$, следуя Овчинникову и Ивлеву [3], мы вычли из криттока компоненту J_2 , связанную с объемным пиннингом на макроскопических дефектах, которую, как мы полагаем, описывает зависимость (1). Выделенные зависимости $J_1(T)$ приведены на рис. 5. Как видно, J_1 демонстрирует тенденцию к насыщению при $T \to 0$ и быстрое уменьшение в диапазоне $10 \,\mathrm{K} \lesssim T \lesssim 30 \,\mathrm{K}$, затухая до нуля при $T \simeq 40 \, \text{K}$. Анализ показал, что

Рис. 5. (Цветной онлайн) Температурные зависимости компонент криттока J_1 и J_2 . Непрерывные и пунктирные линии – подгонки соответственно зависимостями (1) и (2) с параметрами, приведенными в табл. 1

поведение $J_1(T)$ хорошо аппроксимируется зависимостью

$$J_1 = \frac{J_1^*}{1 + 1\mathbf{K} \cdot \exp(T/T_1)/2T_1},$$
(2)

где параметр T_1 имеет размерность температуры. Для всех измеренных образцов в пределах погрешности $\Delta T_1 \simeq 0.1 \,\mathrm{K}$ мы получили одинаковое значение $T_1 = 5.8 \,\mathrm{K}$ и различные амплитуды токов $J_1(0) = J_1^*/(1 + 1 \mathrm{K}/2T_1)$ (см. табл. 1). Мы полагаем, что увеличение скорости релаксации в образцах Y1 и Y2 вызвано релаксацией компоненты J_1 , а быстрое затухание J_1 со временем и температурой обусловлено термоактивацией движения вихрей вследствие малого значения энергии пиннинга вакансий [5].

На рис. 5 приведена также температурная зависимость компоненты J₂, выделенная из экспериментальных данных как $J_2 = J - J_1$. Сравнение компонентов криттока разных образцов (см. рис.5 и табл. 1) показывает, что при низких температурах величины J_2 отличаются не более чем на 15 %, однако величины J_1 отличаются существенно, так $J_1 \simeq J_2$ для образца Y1, $J_1\simeq 0.5J_2$ для Y2
и $J_1\simeq 0.1J_2$ для Y3. При этом значения $J_1(0)$ образцов Y3 и Y1 отличаются в восемь раз. Сильный разброс в величинах J₁ у пленок, синтезированных по одной технологии, объясняется коллективным характером пиннинга вихрей на кислородных вакансиях. Поскольку разброс параметра решетки c не превышает 0.01 Å, концентрации кислородных вакансий в пленках различаются слабо [33], поэтому при сильном пиннинге криттоки также не должны сильно различаться [5, 34]. В то же время коллективный пиннинг [5, 34] определяется не значениями концентраций, а неоднородностью распределения вакансий в CuO₂-плоскостях, которую трудно контролировать в процессе синтеза пленок.

Различное соотношение компонент J_1 и J_2 вместе с различием в величинах T_i и α обуславливают разнообразие температурного поведения полного тока J. Предварительные исследования воздействия магнитного поля H = 1 - 1.5 кЭ на компоненты тока показало его слабое влияние на J_1 и T_i , подавление J_2 и рост показателя степени α с увеличением поля [35]. Отметим, что в более сильном поле $H \gtrsim 5$ кЭ уменьшается также и температура необратимости T_i [8]. Таким образом, воздействие поля ведет к еще большему разнообразию зависимостей J(T).

4. Заключение. Разделение и анализ компонент криттока в пленках $YBa_2Cu_3O_{7-\delta}$ позволило прецизионно аппроксимировать его температурную зависимость в диапазоне от 4.2 К до температуры необратимости (см. рис. 2). Мы полагаем, что подобный анализ должен быть эффективен для остальных ВТСП, обладающих слоистой структурой, включая сверхпроводники на основе железа. Корректная интерпретация температурного поведения криттока и скорости его релаксации при температурах ниже 30 К важна как в прикладных исследованиях по оптимизации параметров ВТСП-лент [1, 15], так и в фундаментальных исследованиях механизмов пиннинга и динамики вихрей в ВТСП-материалах.

Авторы благодарят О.А. Чуркина за помощь в экспериментах, О.А. Крымскую за анализ структуры образцов, а также сотрудников Отдела низких температур и криогенной техники Института общей физики им. А.М. Прохорова РАН за поддержку данных исследований.

- S.R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang, and M. Maley, Nat. Mater. 6, 631 (2007).
- M. V. Feigel'man and V. M. Vinokur, Phys. Rev. B 41, 8986 (1990).
- Yu.N. Ovchinnikov and B.I. Ivlev, Phys. Rev. B 43, 8024 (1991).
- D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48, 13060 (1993).
- G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
- A. Gurevich and E. A. Pashitskii, Phys. Rev. B 57(13), 878 (1998).
- V. Pan, Y. Cherpak, V. Komashko, S. Pozigun, C. Tretiatchenko, A. Semenov, E. Pashitskii, and A.V. Pan, Phys. Rev. B 73, 054508 (2006).

- J. Deak, M. McElfresh, J.R. Clem, Zh. Hao, M. Konczykowski, R. Muenchausen, S. Foltyn, and R. Dye, Phys. Rev. B 49, 6270 (1994).
- Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, Rev. Mod. Phys. 68, 911 (1996).
- 10. N.J. Long, Entropy **15**(7), 2585 (2013).
- N.J. Long, S.C. Wimbush, N.M. Strickland, E.F. Talantsev, P. D'Souza, J.A. Xia, and R. Knibbe, IEEE Trans. Appl. Supercond. 23(3), 8001705 (2013).
- B. M. Lairson, J. Z. Sun, J. C. Bravman, and T. H. Geballe, Phys. Rev. B 42, 1008 (1990).
- E. Moraitakis, M. Pissas, G. Kallias, and D. Niarchos, Supercond. Sci. Technol. 12, 682 (1999).
- M. Peurla, H. Huhtinen, and P. Paturi, Supercond. Sci. Technol. 18(5), 628 (2005).
- C. Senatore, Ch. Barth, M. Bonura, M. Kulich, and G. Mondonico, Supercond. Sci. Technol. 29, 014002 (2016).
- Ö. Polat, J. W. Sinclair, Y. L. Zuev, J. R. Thompson, D. K. Christen, S. W. Cook, D. Kumar, Y. Chen, and V. Selvamanickam, Phys. Rev. B 84, 024519 (2011).
- J. Gutiérrez, T. Puig, and X. Obradors, Appl. Phys. Lett. 90, 162514 (2007).
- T. Puig, J. Gutiérrez, A. Pomar, A. Llordés, J. Gázquez, S. Ricart, F. Sandiumenge, and X. Obradors, Supercond. Sci. Technol. **21**(3), 034008 (2008).
- É. A. Pashitskiĭ, V. I. Vakaryuk, S. M. Ryabchenko, and Yu. V. Fedotov, Low Temp. Phys. 27, 96 (2001).
- Yu. V. Fedotov, S. M. Ryabchenko, É. A. Pashitskiĭ, A. V. Semenov, V. I. Vakaryuk, V. M. Pan, and V. S. Flis, Low Temp. Phys. 28, 172 (2002).
- 21. M. Djupmyr, G. Cristiani, H.-U. Habermeier, and

J. Albrecht, Phys. Rev. B 72, 220507(R) (2005).

- J. Albrecht, M. Djupmyr, and S. Brück, J. Phys.: Condens. Matter 19(21), 216211 (2007).
- A. O. Ijaduola, J. R. Thompson, R. Feenstra, D. K. Christen, A. A. Gapud, and X. Song, Phys. Rev. B 73, 134502 (2006).
- M. Miura, B. Maiorov, S.A. Baily, N. Haberkorn, J. O. Willis, K. Marken, T. Izumi, Y. Shiohara, and L. Civale, Phys. Rev. B 83, 184519 (2011).
- H. Darhmaoui and J. Jung, Phys. Rev. B 53, 14621 (1996).
- H. Yan, J. Jung, H. Darhmaoui, Z. F. Ren, J. H. Wang, and W.-K. Kwok, Phys. Rev. B 61, 11711 (2000).
- A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, Physica C 180, 69 (1991).
- 28. A. V. Kuznetsov, A. A. Ivanov, D. V. Eremenko, and V. N. Trofimov, Phys. Rev. B 52, 9637 (1995).
- M. Nideröst, A. Suter, P. Visani, A.C. Mota, and G. Blatter, Phys. Rev. B 53, 9286 (1996).
- I. P. Krylov, E. J. Maritz, and E. B. Nyeanchi, Phys. Rev. B 58, 14609 (1998).
- 31. V. N. Trofimov, Cyogenics **32**, 513 (1992).
- L. Fruchter, A. P. Malozemoff, I. A. Campbell, J. Sanchez, M. Konczykowski, R. Griessen, and F. Holtzberg, Phys. Rev. B 43, 8709 (1991).
- J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).
- G. Blatter, V.B. Geshkenbein, and J.A.G. Koopmann, Phys. Rev. Lett. **92**, 067009 (2004).
- 35. A.V. Kuznetsov, I.I. Sannikov, and A.A. Ivanov, arXiv:1612.05454v1 [cond-mat.supr-con] (2016).