Скейлинг кондактанса и резистанса квадратных решеток с экспоненциально широким спектром сопротивлений связей

О.А. Ткаченко¹⁾, В.А. Ткаченко

Институт физики полупроводников им. А.В. Ржанова СО РАН, 630090 Новосибирск, Россия

Поступила в редакцию 27 июля 2017 г.

Вычислены средние по реализациям беспорядка кондактанс \overline{G} и резистанс $\overline{G^{-1}}$ с изменением размера квадратных решеток L. В контрасте с разнонаправленным поведением этих величин при перколяции в решетках с бинарным разбросом кондактансов связей ($g_i = 0$, либо 1) обнаружено, что средние кондактанс и резистанс решеток уменьшаются одновременно с ростом L в случае экспоненциального распределения локальных кондактансов $g_i = \exp(-kx_i), x_i \in [0,1]$ – случайные числа. При L меньше длины беспорядка $L_0 = bk^{\nu}$ поведение $\overline{G}(L)$ и $\overline{G^{-1}}(L)$ является степенным L^{-n} с n = k/5 и n = k/6соответственно. Похожим образом ведут себя распределения кондактансов связей, моделирующие переход между открытым и туннельным режимами в полупроводниковых решетках антиточек, созданных в двумерном электронном газе.

DOI: 10.7868/S0370274X17170106

Решетки с экспоненциальными распределениями кондактансов связей $g_i = \exp(-kx_i)$, где $k \gg 1$ и $x_i \in [0,1]$ – случайные числа, являются базовыми моделями разупорядоченных 3d [1-3] и 2d [4, 5] наносистем. Например, они моделируют протекание тока через гранулированные материалы, которое происходит за счет туннелирования между проводящими гранулами. Кроме того, представление о решетке случайных сопротивлений естественным образом возникает при изучении транспорта через массивы антиточек [6-8], созданные в полупроводниковом двумерном электронном газе (ДЭГ). Из-за геометрического и примесного беспорядков сужения между антиточками, которые представляют собой потенциальные барьеры, неодинаковы и могут быть либо открыты для прохождения электронов (энергия Ферми больше высоты барьера), либо находиться в туннельном режиме. Напряжение на затворе V управляет плотностью ДЭГ и тем самым кондактансами сужений. По измеренной зависимости кондактанса решетки от напряжения $G \propto (V - V_0)^t$ определяется критический индекс проводимости t. При этом подразумевается, что концентрация проводящих связей р линейно зависит от напряжения на затворе $p - p_c \propto (V - V_0)$ [6, 7]. Однако сложность в том, что переход из открытого в туннельный режим происходит плавно, и все сужения являются проводящими. Поэтому неясно, что имеется в виду под концентрацией проводящих связей. Та же проблема касается

гранулированных материалов, несмотря на то, что концентрация высокопроводящей фазы может быть заданной [2,3]. В этих системах значения t, найденные экспериментально, иногда существенно отличаются от универсальных индексов теории перколяции [2,3,8].

В теории перколяции известен (ссылки в [9]) другой способ определения критического индекса проводимости t – метод конечного скейлинга, когда для решеток небольших размеров L определяется зависимость усредненной по реализациям беспорядка проводимости решетки $\overline{G}(L)$. Для двумерных полупроводниковых решеток этот метод можно реализовать экспериментально. Так, в рамках современной технологии интегральных микросхем есть возможность формировать массивы номинально одинаковых небольших 2d-систем с естественным или искусственным беспорядком для ряда значений L и выполнять необходимые измерения.

В настоящей работе мы численно показываем, что в квадратных решетках малых размеров с экспоненциально широкими распределениями $g_i = \exp(-kx_i)$, $20 \le k \le 50$ зависимости $\overline{G}(L)$ и $\overline{G^{-1}}(L)$ являются степенными функциями L^{-n} с близкими показателями $n_G \approx k/5$ и $n_R \approx k/6$ соответственно. При этом средний кондактанс и резистанс одновременно убывают с увеличением размера L, что необычно. Похожие результаты, но с существенным различием n_G и n_R , получаются для распределений, моделирующих решетки антиточек в ДЭГ. Распределение локальных кондактансов связей в этом случае оказывается ком-

¹⁾e-mail: otkach@isp.nsc.ru

бинированным: экспоненциальным только для части туннельных связей с $x_i > x_0$, причем значение x_0 и показатель экспоненты k определяются температурой и напряжением на затворе [8]. В переходе от открытого к туннельному режиму величина k, характеризующая распределение локальных кондактансов, может достигать высоких значений: k = 100 - 200при $x_0 \ge 0.4$ [8]. Кондактансы открытых связей меняются гораздо слабее, чем в туннельном режиме, и в этой работе для простоты принято $g_i = 1$ на интервале $0 < x_i < x_0$.

Известно, что системы с экспоненциальным разбросом сопротивлений связей имеют конечную длину корреляции $L_0 \approx b k^{\nu}$ [1], где ν – критический индекс радиуса корреляции R, в двумерном случае $\nu = 4/3$. Далее мы будем называть L_0 длиной беспорядка. Когда размер решетки, измеряемый числом периодов L, много больше L_0 , ее проводимость самоусредняется и имеет хорошо определенное значение G_e. Для квадратных решеток $G_e = \exp(-0.5k)$. Однако при малых размерах $L < L_0$ протекание через решетку носит фрактальный характер, что должно отражаться в поведении проводимости $\overline{G}(L)$ и удельного сопротивления $\overline{G^{-1}}(L)$, усредненных по реализациям беспорядка [10]. Например, в случае решеток с бинарным распределением локальных кондактансов 0–1 на пороге перколяции выполняется: $\overline{G}(L) \propto L^{-n}$, $\overline{G^{-1}}(L) \propto L^n$, т.е. средний кондактанс с ростом размера решетки падает, а резистанс растет. В двумерном случае значение *п* пропорционально критическому индексу электропроводности: $t = n\nu$. Для многих распределений критические индексы электропроводности и электросопротивления, найденные таким способом (конечным скейлингом), это одно и то же число t = 1.3 ($n \approx 0.98$). В то же время, для некоторых степенных распределений кондактансов связей показатель n, определяющий зависимость $\overline{G}(L) \propto L^{-n}$, становится существенно больше единицы, и t принимает неуниверсальные значения [11, 12]. При этом для конечных L избежать больших флуктуаций при расчете среднего сопротивления $\overline{G^{-1}}(L)$ не удается из-за близких к нулю кондактансов решетки для некоторых реализаций беспорядка [12].

Основные результаты настоящей работы получены решением системы уравнений Кирхгофа для сотен тысяч реализаций беспорядка при заданном размере решеток L. Вычисления выполняли с двойной точностью, и значения g_i , если они становились меньше $\epsilon = 10^{-15}$ для высоких k, приравнивались этому ϵ . Такое обрезание g_i для $x_i > 0.5$ не влияет на средний кондактанс \overline{G} , но делает неправильным расчет среднего сопротивления. Поэтому для k > 30

4 Письма в ЖЭТФ том 106 вып. 5-6 2017

мы вычисляли только $\overline{G}(L/L_0)/G_e$. Результаты расчетов для экспоненциального распределения кондактансов связей при $k \leq 50$ показаны на рис. 1, из

Рис. 1. (Цветной онлайн) Зависимости $\overline{G}/G_e(L/k^{\nu})$ для квадратных решеток в случае экспоненциального распределения $g_i = \exp(-kx_i)$. Расчет – для указанных kи теоретическая кривая из работы [9] (см. текст)

которого следует, что при $\ln L/k^{\nu} > -2$ для всех kкривые сливаются в одну, которая отвечает формуле $\ln(\overline{G}/G_e) = 0.5(L_0/L)^2 = 0.025x^2$, где $x \equiv k^{\nu}/L$. Данная формула получена в [10] на основании гипотезы о логнормальном распределении сопротивления небольших решеток с экспоненциальным разбросом локальных кондактансов. Там же была приведена приближенная формула для моментов этого распределения, из которой следовало, что первый и минус первый моменты равны: $\overline{G}/G_e = G_e \overline{G^{-1}}$. Из рис. 1 делаем вывод, что для достаточно больших k представленная выше формула применительно к проводимости быстро нарушается с уменьшением $L < 0.2k^{\nu}$: здесь $\overline{G} \propto L^{-n}$. Участок с наклоном $n_G \approx k/5$ увеличивается с ростом k и становится незаметным при k < 20. Далее мы предлагаем способ приближенного расчета $\overline{G}(L)$ и $\overline{G^{-1}}(L)$ для $k \leq 50$ без решения системы уравнений Кирхгофа.

В теории перколяции электропроводность решеток с экспоненциальным разбросом g_i находится рассмотрением критических подсеток, у которых часть связей с $x_i > x_c$ оборвана (заменена на непроводящие $g_i = 0$) [1]. Критическая подсетка – это часть исходной решетки с кондактансами связей $g_i \ge g_c$ при $x_i < x_c$, которая несет практически весь ток. Получить ее можно следующим способом. Сначала все связи решетки разрываются, а затем последовательно включаются в порядке убывания кондактан-сов связей. Электропроводность исходной решетки

G определится с точностью до коэффициента ~ 1 кондактансом той связи $g_c = \exp(-kx_c)$, которая впервые создаст протекание тока через решетку. Для конкретной реализации беспорядка по значению x_c можно восстановить критическую долю целых связей p_c , поскольку все связи с $x \leq x_c$ сохранены, а связи с $x>x_c$ оборваны. Для конечных решеток x_c и р_с определяются реализацией беспорядка, и численно было найдено, что среднеквадратичная флуктуация зависит от L: $\delta x_c \propto \delta p_c \propto L^{-1/\nu}$. Длина беспорядка L₀ определяет размер решетки, при котором разброс показателя экспоненты, определяющей кондактанс критического элемента, становится порядка единицы: $k\delta x_c = bkL_0^{-1/\nu} = 1$ [1]. Значение b = 0.2 было найдено в работе [10] и уточнено нами: b = 0.224. При $L \gg L_0$ флуктуации $g_c(x_c)$ исчезают, а $\bar{x}_c = 1 - \bar{p}_c$ приближается к 0.5.

Представление о критической подсетке было использовано для получения степенного поведения $\overline{G}(L)$ и $\overline{G^{-1}}(L)$ при $k \leq 50$ в решетках малых размеров. Перебирая реализации беспорядка и находя x_c , мы вычислили распределения $P(x_c)$ (плотность вероятности иметь данный x_c) и $P(p_c)$, которые зависят только от L и не зависят от типа распределения. На рис. 2 показано распределение $P(x_c)$ для разных

Рис. 2. (Цветной онлайн) Вычисленные универсальные распределения критических x_c для указанных L. Результат подгонки функцией Гаусса дан для L = 5 и 15

L. Чем больше L, тем уже распределение, и дисперсия следует закону $W_L = BL^{-1/\nu}$, ранее полученному для задачи узлов [1]. Подгонкой к вычисленным среднеквадратичным отклонениям x_c мы нашли, что B = 0.41. В отличие от функции $P(p_c)$, определенной в дискретном числе точек, функция $P(x_c)$ непрерывна и шире, а $\overline{x}_c < 0.5$. В логарифмическом масштабе хорошо видны отклонения от гауссовой функции при малых L и небольшая асимметрия: вблизи точки $x_c = 0$ значения $P(x_c)$ больше, чем около $x_c = 1$ (см. рис. 2).

По известному распределению $P(x_c, L)$ и кондактансу критической связи $g_c = \exp(-kx_c)$ можно численным интегрированием найти $\overline{G}(L)$ и $\overline{G^{-1}}(L)$ для довольно больших k. Поскольку $P(x_c)$ слегка асимметрична, площадь под кривой, определяющей среднюю проводимость, $P(x_c) \exp(-kx_c)$ больше, чем под кривой $P(x_c) \exp(kx_c)$ для $\overline{G^{-1}}$. Найденное таким способом степенное поведение $\overline{G}/G_e(L)$ решеток с разными $L < L_0$ и k с точностью до небольшого сдвига совпало с полученным численным решением уравнений Кирхгофа на рис. 1. Данный способ позволяет легко получать резистанс $G_e \overline{G^{-1}}$ для k > 30, т.е. когда кондактансы связей с $x_i \sim 1$ настолько малы, что эффективно оказываются равными нулю в арифметике двойной точности. Соответствующие результаты даны на рис. 3. Для сравнения приво-

Рис. 3. (Цветной онлайн) Зависимости $\overline{G}(L)/G_e$ (пунктир) и $G_e \overline{G^{-1}}(L)$ (сплошные линии) для квадратных решеток в случае $g_i = \exp(-kx_i)$ при указанных k. Короткие линии на отрезке $4 \le L \le 15$ – расчет по распределениям $P(x_c)$ из рис. 2. Линии вплоть до L = 30 при k = 30 – расчет по Кирхгофу и теоретическая кривая из работы [9] (см. текст)

дятся линии $\overline{G}(L)/G_e$, $G_e\overline{G^{-1}}(L)$, вычисленные по Кирхгофу при k = 30, для которого среднее сопротивление вычисляется еще правильно. Для данного k приведена также кривая, отвечающая формуле $\ln(\overline{G}/G_e) = \ln(G_e\overline{G^{-1}}) = 0.5(L_0/L)^2$ [10]. Видно, что формула работает лишь при условии $\ln L \ge 2.5$. Напротив, при малых $L < L_0$ зависимости являются степенными функциями со слегка разными показателями степени: $n_G \approx k/5$, $n_R \approx k/6$. Помимо распределения $g_i(x_i)$, найденного из подгонки под эксперимент [8], переход решетки антиточек в ДЭГ из открытого в туннельный режим можно моделировать упрощенной комбинацией $g_i = 1$ при $0 < x_i < x_0 < 0.5$ и $g_i = \exp(k(x_0 - x_i))$ при $x_0 < x_i < 1, k \gg 10$. На рис. 4 показаны результаты

Рис. 4. (Цветной онлайн) Зависимости $\overline{G}(L/k^{\nu})/G_e$ для квадратных решеток в случае комбинированных распределений $g_i(x_i)$. Расчет для указанных x_0 , k и теоретическая кривая из работы [9] (см. текст)

расчета $\overline{G}(L)$ для таких распределений. При $x_0 \ge 0.4$ значение k в численных расчетах можно увеличить до 180-200, что соответствует реальным туннельным сужениям между антиточками [8]. При этом прогнозируемая по формуле $L_0 \equiv 0.2k^{\nu}$ длина беспорядка возрастает в несколько раз. Оценка подтверждается присутствием переходного поведения на рис. 1 и рис. 4 в одном и том же месте $\ln L/k^{\nu} \approx -2$. При этом на двух верхних кривых из рис.4 виден изгиб, который связан с тем, что длина корреляции, отвечающей доле $x_0 < 0.5$ высокопроводящих связей $g_i = 1$, становится меньше длины беспорядка L₀. Этот изгиб почти отсутствует для трех нижних линий, участки степенного поведения которых являются достаточно длинными. Наклоны n_G на этих участках уменьшаются с 4 до 1.4 (см. рис. 4). Если по аналогии с решетками на пороге перколяции иметь ввиду формулу для критических индексов проводимости t = $= n_G \nu$, то они бы получились неуниверсальными. В случае комбинированных распределений $g_i(x_i)$ зависимости $\overline{G}(L)/G_e$ и $G_e \overline{G^{-1}}(L)$ различаются сильнее и в противоположную сторону, чем на рис. 3. Вариант с $x_0 = 0.43$ и k = 40 рассмотрен на рис. 5. Для него значения n_G и n_R положительны, но $n_G \ll n_R$, а это контрастирует с известным равенством $n_R = -n_G$ в случае бинарного распределения 0-1. Найденное по-

Рис. 5. (Цветной онлайн) Зависимости $\overline{G}(L)/G_e$, $G_e\overline{G^{-1}}(L)$ для квадратной решетки с комбинированным распределением $g_i(x_i)$, $x_0 = 0.43$, k = 40. Длинные линии – расчет по Кирхгофу, короткие – по распределению $P(x_c)$ из рис. 2

ведение можно легко понять, поскольку в рассмотренном случае при малых $L < L_0$ площадь под кривой $P(x_c)g(x_c)/g(0.5)$ гораздо меньше, чем под кривой $P(x_c)g(0.5)/g(x_c)$.

Итак, обнаружено, что средние по реализациям беспорядка кондактанс и резистанс численно изученных квадратных решеток ведут себя как степенные функции L^{-n} , если линейный размер решетки $L < L_0$. Для экспоненциального, либо комбинированного распределений $q_i(x_i)$ длина беспорядка L_0 и показатели степени n зависят от параметров k и x_0 . Значения *п* имеют один знак и различны для проводимости и удельного сопротивления, чему дано простое объяснение в рамках теории перколяции. При современной технологии результаты могут быть проверены экспериментально. Например, недавно измерено влияние остаточного беспорядка в сотнях номинально одинаковых квантовых точечных контактов. изготовленных на одном кристалле [13]. Согласованность значений "критических индексов" t, полученных разными способами в малых (скейлинг) и больших решетках (с изменением концентрации проводящих связей), нуждается в дальнейшем исследовании.

Работа выполнена при поддержке РНФ (грант 14-22-00143). Использованы вычислительные ресурсы Сибирского суперкомпьютерного центра СО РАН. Авторы благодарят Д.Г. Бакшеева за помощь в расчетах, а также З.Д. Квона, Г.М. Минькова, А.А. Снарского и И.В. Безсуднова за обсуждение поднятых вопросов.

Б.И. Шкловский, А.Л. Эфрос, Электронные свойства легированных полупроводников, Наука, М. (1979), 416 с.

- 2. I. Balberg, Phys. Rev. Lett. 59, 1305 (1987).
- D. Toker, D. Azulay, N. Shimoni, I. Balberg, and O. Millo, Phys. Rev. B 68, 041403 (2003).
- S. Yamamuro, K. Sumiyama, T. Hihara, and K. Suzuki, J. Phys.: Condens. Matter. 11, 3247 (1999).
- A. I. Yakimov, C. J. Adkins, R. Boucher, A. V. Dvurechenskii, A. I. Nikiforov, O. P. Pchelyakov, and G. Biskupski, Phys. Rev. B 59, 12598 (1999).
- 6. З. Д. Квон, Письма в ЖЭТФ **76**, 619 (2002).
- A. Dorn, T. Ihn, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. B 70, 205306 (2004).
- В. А. Ткаченко, О. А. Ткаченко, Г. М. Миньков, А. А. Шерстобитов, Письма в ЖЭТФ 104, 501 (2016).

- А.А. Снарский, И.В. Безсуднов, В.А. Севрюков, Процессы переноса в макроскопических неупорядоченных средах: от теории среднего поля до перколяции, ЛКИ, М. (2007).
- Y. M. Strelniker, S. Havlin, R. Berkovits, and A. Frydman, Phys. Rev. E 72, 016121 (2005).
- P. N. Sen, J. N. Roberts, and B. I. Halperin, Phys. Rev. B 32, 3306 (1985).
- M. Octavio and C. J. Lobb, Phys. Rev. B 43, 8233 (1991).
- L. W. Smith, H. Al-Taie, F. Sfigakis, P. See, A. A. J. Lesage, B. Xu, J. P. Griffiths, H. E. Beere, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, Phys. Rev. B 90, 045426 (2014).