Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 106 (2017) | ISSUE 7 | PAGE 424
Unconventional spin-charge phase separation in a model 2D cuprate
Abstract
In this Letter we address a challenging problem of a competition of charge and spin orders for high-Tc cuprates within a simplified 2D spin-pseudospin model which takes into account both conventional Heisenberg Cu2+-Cu2+ antiferromagnetic spin exchange coupling (J) and the on-site (U) and inter-site (V) charge correlations in the CuO2 planes with the on-site Hilbert space reduced to only three effective charge states (nominally Cu1+;2+;3+). We performed classical Monte-Carlo calculations for large square lattices implying the mobile doped charges and focusing on a case of a small inter-site repulsion V\ll J. The on-site attraction (U<0) does suppress the antiferromagnetic ordering and gives rise to a checkerboard charge order with the doped charge distributed randomly over a system in the whole temperature range. However, under the on-site repulsion (U>0) the homogeneous ground state antiferromagnetic solutions of the doped system found in a mean-field approximation are shown to be unstable with respect to a phase separation with the charge and spin subsystems behaving like immiscible quantum liquids. Puzzlingly, with lowering the temperature one can observe two sequential phase transitions: first, an antiferromagnetic ordering in the spin subsystem diluted by randomly distributed charges, then, a charge condensation in the charge droplets. The effects are illustrated by the Monte-Carlo calculations of the specific heat and longitudinal magnetic susceptibility.