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We highlight the importance of quantum fluctua-
tions in organizing a dissipative quantum phase tran-
sition for the driven Jaynes—Cummings interaction with
variable qubit-cavity detuning. Quantum fluctuations
are responsible for the substantial difference from the
predictions of the semiclassical theory, the extent of
which is revealed in the properties of quantum bista-
bility, and visualized with the help of quasi-distribution
functions for the cavity field. The nonlinear system dy-
namics is subject to an appropriate scale parameter,
based on which a “thermodynamic limit” can be defined.

The Master Equation (ME) in the interaction pic-
ture and the rotating wave approximation (RWA) for
a two-level atom with frequency w, and raising (lower-
ing) operators o (o_) interacting with a single cavity
mode with frequency w. and raising (lowering) opera-
tors a'(a), driven by a coherent field with strength e4
and frequency wq in the presence of dissipation at zero
temperature, reads:
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where Aw(c q) = Wd — W(c,q) i the detuning between the
laser driving field and the (cavity field, qubit) respec-
tively. The coupling strength between the cavity mode
and the atom, detuned by § = w,—w. [with [0] < w(c ¢,
is denoted by g, an interaction which is assumed to
be much stronger than the cavity decay rate 2x and
the spontaneous emission rate v in the strong coupling
regime.

The @ function in the steady-state of the cavity field:

Q(r +iy) = (1/7)(x + iy|pevss|v + iy) (2)

is used to provide a “classical” visualization of the in-
tracavity radiation field in the quantum-classical corre-
spondence provided by quasi-probability distributions.
In Eq.(2), pev,ss is the reduced cavity density matrix
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pevss = Timisoo[(+Hp(t)]+) + (~lp(®)] =], where |+)
and |—) are the upper and lower states of the two-level
atom, respectively. The quasi-probability distribution in
the @ representation for a cavity field in the coher-
ent state |a.) = |z, + iy.) with average photon occu-
pation (n) = (ala) = |a.|* assumes a Gaussian form:
Qola +iy) = (1/7) exp{[(x —20)? + (y — yo)*]}.

As we can observe in Fig. 1, there is a sharp drop
in the cavity photon number as we move from § < 0 to
& > 0 since the probabilities of occupying the two neo-
classical states are reversed, with the low-photon state
(closer to the center of coordinates) becoming dominant
[see Frame (d)]. At the same time, the states of complex-
amplitude quantum bistability remain centered at the
same positions in the phase portrait for the same |d].
Moreover, at § = 0 [Frame (c)| there appears a third
state very close to the center of co-ordinates along the
excitation path of the JC ladder. The two states in
Frames (a, b, d) satisfy the mean-field state equation
of the Kerr nonlinearity:
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one for § < 0 (high-photon) and one for § > 0 (low-
photon state). We note, remarkably, that both states are
present in the phase portrait quasi-distribution, even if
the value of § has a definite sign, while the variation of
qubit-cavity detuning results only in the change of their
relative weights. At the same time, the Maxwell-Bloch
equations do not predict any bistability for the corre-
sponding drive parameters and vanishing spontaneous
emission rate. On the other hand, the very low ampli-
tude state of Frame (c) is a prediction of the neoclassical
theory of radiation, satisfying the state equation:
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Fig. 1. (Color online) Towards qubit-cavity resonance. Quasi-probability function Q(z +iy) of the intracavity field for varying
cavity-qubit detuning §/g: —10,—5,0,+5 in (a)—(d) respectively. Parameters: Aw./x = 0.8, g/k = 16, v/(2k) = 0, and

eqa=9/2

The approximation in the second line would also give
the Rabi resonances at Aw. = £g in the linear regime,
for a much weaker drive and a larger drive-cavity de-
tuning.

For Aw,. = 0, setting § = £|4| in Eq. (3) yields two
complex-conjugate neoclassical field amplitudes ia. Tak-
ing now the limit |§| — 0 recovers the two states of phase
bistability, a = —ieq[r +ig/(2||)] 7!, which is reflected
by two symmetrically located peaks of equal height in
the @ function. In the opposite limit, when g/|0] < 1
and |a|?> < nne, Kerr, Where npe, kerr = [6/(29)]%, the
resonances of the linear strongly dispersive regime are
located at Aw,. = £g¢2/|]|.
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Consequently, varying the detuning between the JC
oscillator constituents and the drive allows us to extract
information on the departure from the semiclassical the-
ory, bringing together the dispersive (|6] > g) and the
resonant (6 = 0) behaviour around the critical point of
a second-order phase transition. States obeying the neo-
classical equations of radiation, together with their cor-
responding scaling, coexist in the quantum picture and
differ from the predictions of the Maxwell-Bloch theory,
following the occurrence of spontaneous dressed-state
polarization and phase bistability at resonance.
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