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We highlight the importance of quantum fluctua-

tions in organizing a dissipative quantum phase tran-

sition for the driven Jaynes–Cummings interaction with

variable qubit-cavity detuning. Quantum fluctuations

are responsible for the substantial difference from the

predictions of the semiclassical theory, the extent of

which is revealed in the properties of quantum bista-

bility, and visualized with the help of quasi-distribution

functions for the cavity field. The nonlinear system dy-

namics is subject to an appropriate scale parameter,

based on which a “thermodynamic limit” can be defined.

The Master Equation (ME) in the interaction pic-

ture and the rotating wave approximation (RWA) for

a two-level atom with frequency ωq and raising (lower-

ing) operators σ+(σ−) interacting with a single cavity

mode with frequency ωc and raising (lowering) opera-

tors a†(a), driven by a coherent field with strength εd
and frequency ωd in the presence of dissipation at zero

temperature, reads:

ρ̇ = i∆ωc[a
†a, ρ] + i∆ωq[σ+σ−, ρ]− iεd[a+ a†, ρ]−

− ig[aσ+ + a†σ−, ρ] + κ
(

2aρa† − a†aρ− ρa†a
)

+

+ (γ/2) (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) , (1)

where ∆ω(c,q) = ωd−ω(c,q) is the detuning between the

laser driving field and the (cavity field, qubit) respec-

tively. The coupling strength between the cavity mode

and the atom, detuned by δ ≡ ωq−ωc [with |δ| ≪ ω(c,q)],

is denoted by g, an interaction which is assumed to

be much stronger than the cavity decay rate 2κ and

the spontaneous emission rate γ in the strong coupling

regime.

The Q function in the steady-state of the cavity field:

Q(x+ iy) = (1/π)〈x+ iy|ρcv,ss|x+ iy〉 (2)

is used to provide a “classical” visualization of the in-

tracavity radiation field in the quantum-classical corre-

spondence provided by quasi-probability distributions.

In Eq. (2), ρcv,ss is the reduced cavity density matrix
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ρcv,ss = limt→∞[〈+|ρ(t)|+〉 + 〈−|ρ(t)|−〉], where |+〉

and |−〉 are the upper and lower states of the two-level

atom, respectively. The quasi-probability distribution in

the Q representation for a cavity field in the coher-

ent state |αc〉 = |xc + iyc〉 with average photon occu-

pation 〈n〉 ≡ 〈a†a〉 = |αc|
2

assumes a Gaussian form:

Qc(x+ iy) = (1/π) exp{−[(x− xc)
2 + (y − yc)

2]}.

As we can observe in Fig. 1, there is a sharp drop

in the cavity photon number as we move from δ < 0 to

δ > 0 since the probabilities of occupying the two neo-

classical states are reversed, with the low-photon state

(closer to the center of coordinates) becoming dominant

[see Frame (d)]. At the same time, the states of complex-

amplitude quantum bistability remain centered at the

same positions in the phase portrait for the same |δ|.

Moreover, at δ = 0 [Frame (c)] there appears a third

state very close to the center of co-ordinates along the

excitation path of the JC ladder. The two states in

Frames (a, b, d) satisfy the mean-field state equation

of the Kerr nonlinearity:

α = −iεd

{

κ− i

[

∆ωc +
g2

δ

(

1 +
4g2

δ2
|α|2

)−1/2
]}−1

,

(3)

one for δ < 0 (high-photon) and one for δ > 0 (low-

photon state). We note, remarkably, that both states are

present in the phase portrait quasi-distribution, even if

the value of δ has a definite sign, while the variation of

qubit-cavity detuning results only in the change of their

relative weights. At the same time, the Maxwell–Bloch

equations do not predict any bistability for the corre-

sponding drive parameters and vanishing spontaneous

emission rate. On the other hand, the very low ampli-

tude state of Frame (c) is a prediction of the neoclassical

theory of radiation, satisfying the state equation:

α = −iεd

[

κ− i

(

∆ωc −
g2

√

∆ω2
c + 4g2|α|2

)]−1

≈

≈ −iεd

[

κ− i

(

∆ωc −
g2

∆ωc

)]−1

, Re(α) ≈ −
εd∆ωc

g2
.(4)
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Fig. 1. (Color online) Towards qubit-cavity resonance. Quasi-probability function Q(x+ iy) of the intracavity field for varying

cavity-qubit detuning δ/g: −10,−5, 0,+5 in (a)–(d) respectively. Parameters: ∆ωc/κ = 0.8, g/κ = 16, γ/(2κ) = 0, and

εd = g/2

The approximation in the second line would also give

the Rabi resonances at ∆ωc = ±g in the linear regime,

for a much weaker drive and a larger drive-cavity de-

tuning.

For ∆ωc = 0, setting δ = ±|δ| in Eq. (3) yields two

complex-conjugate neoclassical field amplitudes iα. Tak-

ing now the limit |δ| → 0 recovers the two states of phase

bistability, α = −iεd[κ± ig/(2|α|)]−1, which is reflected

by two symmetrically located peaks of equal height in

the Q function. In the opposite limit, when g/|δ| ≪ 1

and |α|2 ≪ nnc, Kerr, where nnc, Kerr = [δ/(2g)]2, the

resonances of the linear strongly dispersive regime are

located at ∆ωc = ±g2/|δ|.

Consequently, varying the detuning between the JC

oscillator constituents and the drive allows us to extract

information on the departure from the semiclassical the-

ory, bringing together the dispersive (|δ| ≫ g) and the

resonant (δ = 0) behaviour around the critical point of

a second-order phase transition. States obeying the neo-

classical equations of radiation, together with their cor-

responding scaling, coexist in the quantum picture and

differ from the predictions of the Maxwell-Bloch theory,

following the occurrence of spontaneous dressed-state

polarization and phase bistability at resonance.

Full text of the paper is published in JETP Letters
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