Коротковременная динамика трехмерной модели Изинга с конкурирующими взаимодействиями

В. А. Мутайламов⁺¹), А. К. Муртазаев^{+*}

+ Институт физики Дагестанского научного центра РАН, 367003 Махачкала, Россия

*Дагестанский государственный университет, 367025 Махачкала, Россия

Поступила в редакцию 18 мая 2018 г. После переработки 28 мая 2018 г.

Впервые с использованием метода коротковременной динамики исследована критическая релаксация из низкотемпературного упорядоченного состояния трехмерной модели Изинга с конкурирующими взаимодействиями на простой кубической решетке. Конкуренция обменных взаимодействий обусловлена учетом ферромагнитного взаимодействия первых ближайших соседей и антиферромагнитного взаимодействия следующих за ближайшими соседей. Исследованы частицы с периодическими граничными условиями, содержащие N = 262144 спинов. Вычисления проводились стандартным алгоритмом Метрополиса метода Монте-Карло. Рассчитаны значения статических критических индексов намагниченности и радиуса корреляции. Впервые рассчитана величина динамического критического индекса для исследованной модели.

DOI: 10.1134/S0370274X18130088

Наличие конкурирующих взаимодействий в магнитных материалах приводит к появлению большого разнообразия магнитных упорядоченных состояний и фазовых переходов между ними. В связи с этим определенный интерес представляет собой трехмерная модель Изинга, в которой учитывается спиновое обменное взаимодействие не только между ближайпими соседями, но и между соседями, следующими за ближайшими. Гамильтониан такой модели может быть представлен в виде

$$H = -\frac{1}{2}J_1 \sum_{\langle i,k \rangle} S_i S_k - \frac{1}{2}J_2 \sum_{\langle l,m \rangle} S_l S_m, \ S_i = \pm 1, \quad (1)$$

где S_i – изинговский спин в узле решетки *i*, первая сумма учитывает ферромагнитное обменное взаимодействие между ближайшими соседями ($J_1 > 0$), вторая сумма учитывает антиферромагнитное обменное взаимодействие между следующими за ближайшими соседями ($J_2 < 0$). Тип магнитного упорядочения при низких температурах зависит от параметра фрустрации $\alpha = |J_2/J_1|$. Данная модель была исследована как теоретически с использованием теории эффективного поля [1], так и методами вычислительной физики (метод Ванга–Ландау и классический алгоритм Метрополиса) [2]. Авторы этих работ показали, что при $0.0 < \alpha < 0.25$ имеет место низкотемпературное ферромагнитное упорядочение, Нами с использованием метода коротковременной динамики исследована критическая релаксация трехмерной модели Изинга с конкурирующими взаимодействиями из низкотемпературного упорядоченного состояния в интервале значений параметра фрустрации $0.001 \le \alpha \le 0.24$. Данный метод в последнее время успешно применяется для исследования критической динамики моделей магнитных материалов [3–8], в котором в рамках модели A (классификация классов универсальности динамического критического поведения Хальперина и Хоэнберга [9]) исследуется критическая релаксация магнитной модели из неравновесного состояния в равновесное.

При старте релаксации из низкотемпературного полностью упорядоченного состояния после микроскопически малого отрезка времени для *k*-го момента намагниченности реализуется скейлинговая форма [3,10]

а при $0.25 < \alpha < 1.0$ коллинеарное, также называемое суперантиферромагнитным (чередующиеся ферромагнитные слои с противоположно направленными спинами). При высоких температурах модель находится в парамагнитном состоянии при всех значениях параметра фрустрации. Граница между ферромагнитной фазой и парамагнитной представляет собой линию фазовых переходов второго рода, тогда как граница между коллинеарной и парамагнитной фазами является линией фазовых переходов первого рода [1, 2].

¹⁾e-mail: vadim.mut@mail.ru

$$M^{(k)}(t,\tau,L) = b^{-k\beta/\nu} M^{(k)}(b^{-z}t,b^{1/\nu}\tau,b^{-1}L), \quad (2)$$

где $M^{(k)} - k$ -й момент намагниченности; t – время; $\tau = (T - T_c)/T_c$ приведенная температура; b – масштабный фактор; β и ν – статические критические индексы намагниченности и радиуса корреляции; z – динамический критический индекс, L – линейный размер системы. Полагая $b = t^{1/z}$ [3], для систем с большими линейными размерами L получаем следующее выражение для намагниченности:

$$M(t,\tau) \sim t^{-\beta/\nu z} M(1, t^{1/\nu z} \tau).$$
 (3)

В точке фазового перехода ($\tau = 0$) намагниченность будет зависеть только от времени по степенному закону

$$M(t) \sim t^{-c_1}, \ c_1 = \frac{\beta}{\nu z}.$$
 (4)

Логарифмируя обе части уравнения (3) и беря производные по τ при $\tau = 0$, получаем степенной закон для логарифмической производной в точке фазового перехода

$$\partial_{\tau} \ln M(t,\tau)|_{\tau=0} \sim t^{-c_{l1}}, \ c_{l1} = \frac{1}{\nu z}.$$
 (5)

Для куммулянта Биндера $U_L(t)$, рассчитываемому по первому и второму моментам намагниченности, теория конечно-размерного скейлинга дает следующую зависимость при $\tau = 0$:

$$U_L(t) = \frac{M^{(2)}}{(M)^2} - 1 \sim t^{c_U}, \quad c_U = \frac{d}{z}, \tag{6}$$

где d – размерность системы.

Таким образом, в ходе одного численного эксперимента метод коротковременной динамики позволяет с использованием соотношений (4)–(6) определить значения трех критических индексов β , ν и z. Кроме того, зависимости (4), построенные при различных значениях температуры, позволяют определить величину T_c по их отклонению от прямой линии в двойном логарифмическом масштабе. Другим достоинством метода является то, что при таком подходе не проявляется критическое замедление, поскольку пространственный радиус корреляции остается небольшим в коротковременном отрезке даже вблизи критической точки [10].

Нами исследовалась частица кубической формы с периодическими граничными условиями, содержащая $L \times L \times L$ элементарных ячеек в каждом кристаллографическом направлении. Рассматривалась система с линейным размером L = 64, содержащая N = 262144 спинов. Данная величина L выбрана как минимально необходимая для того, чтобы исключить влияние конечных размеров на получаемый результат [3].

Вычисления проводились стандартным алгоритмом Метрополиса метода Монте-Карло. Релаксация системы осуществлялась из начального низкотемпературного полностью упорядоченного состояния со стартовым значением намагниченности $m_0 = 1$ в течение времени $t_{\rm max} = 10^3$, где в качестве единицы "времени" брался один Монте-Карло шаг на спин. Релаксационные зависимости вычислялись $n = 10^4$ раз, полученные данные усреднялись между собой.

Таблица 1. Значения температур, при которых проводились вычисления

α	T_1	T_2	T_3	T_4	T_5
0.001	4.490	4.495	4.500	4.505	4.510
0.05	3.895	3.900	3.905	3.910	3.915
0.10	3.276	3.281	3.286	3.291	3.296
0.15	2.630	2.635	2.640	2.645	2.650
0.20	1.945	1.950	1.955	1.960	1.965
0.24	1.329	1.334	1.339	1.344	1.349

Для каждого значения α моделирование проводилось при пяти значениях температуры в окрестностях точки фазового перехода. Значения этих температур в единицах обменного интеграла $k_b T/J_1$ приведены в табл. 1. Величина Т₃ выбиралась максимально близкой к величине Т_с. Таким образом, для каждого значения α мы в результате моделирования получали пять зависимостей намагниченности от времени (4). После этого методом наименьших квадратов проводилась интерполяция этих зависимостей для всего диапазона температур от T_1 до T_5 с шагом $\Delta T = 10^{-4}$. Анализ всех полученных кривых (полученных как прямым счетом, так и интерполяцией) позволял нам с большой точностью определять критическую температуру, поскольку зависимость (4) в точке фазового перехода должна представлять собой прямую линию в двойном логарифмическом масштабе. Отклонение от прямой линии определялось методом наименьших квадратов. За критическую принималась температура, при которой это отклонение было минимальным. Рисунок 1 демонстрирует типичную зависимость намагниченности от времени при различных значениях температуры для параметра фрустрации $\alpha = 0.15$ (здесь и далее все величины приведены в условных единицах).

Аналогичным образом для найденного значения T_c интерполяцией вычислялась зависимость куммулянта Биндера от времени (6). Логарифмическая производная в точке фазового перехода вычислялась

Рис. 1. Зависимость намагниченности от времени при пяти значениях температур для параметра фрустрации $\alpha = 0.15$. Значения температур указаны в табл. 1

аппроксимацией методом наименьших квадратов по пяти зависимостям намагниченности от времени, построенным при указанных в табл. 1 температурах.

Полученные нами зависимости намагниченности, ее логарифмической производной и куммулянта Биндера от времени в критической точке для различных значений параметра фрустрации α представлены в двойном логарифмическом масштабе на рис. 2– 4 соответственно. Отметим, что в ходе численного

Рис. 2. Зависимость намагниченности от времени в точке фазового перехода для различных значений параметра фрустрации α : 0.001 (•); 0.05 (°); 0.10 (**■**); 0.15 (**□**); 0.20 (**▲**); 0.24 (Δ)

эксперимента мы получали результаты с шагом по времени $\Delta t = 1$, но для наглядности на графиках 2–4 результаты приведены с шагом $\Delta t = 50$.

Анализ итоговых зависимостей (4)–(6) показал, что степенное скейлинговое поведение исследованной системы реализуется с момента времени порядка

Рис. 3. Зависимость производной логарифма намагниченности от времени в точке фазового перехода для различных значений параметра фрустрации α : 0.001 (•); 0.05 (\circ); 0.10 (•); 0.15 (\Box); 0.20 (•); 0.24 (Δ)

Рис. 4. Зависимость куммулянта Биндера от времени в точке фазового перехода для различных значений параметра фрустрации *α*: 0.001 (●); 0.05 (○); 0.10 (■); 0.15 (□); 0.20 (▲); 0.24 (△)

t = 100. Поэтому аппроксимация всех этих кривых проводилась в интервале времени t = [100; 1000]. В результате аппроксимации для каждого значения α были получены значения критических индексов c_1 , c_{l1} и c_u , что, в свою очередь, позволило рассчитать значения критических индексов β , ν и z. Найденные таким образом значения критических индексов β , ν и z, а также значения критических температур T_c , приведены в табл. 2.

Как видно из табл. 2, в диапазоне $0.001 \leq \alpha \leq 0.15$ значения критических индексов практически не зависят от параметра фрустрации α . При этом значения индексов β и ν близки к значениям для классической трехмерной модели Изинга [11], а значение ин-

α	T_c	c_1	c_{l1}	c_u	β	ν	z
0.001	4.4990(3)	0.244(3)	0.779(3)	1.43(2)	0.313(4)	0.61(2)	2.10(2)
0.05	3.9063(3)	0.241(3)	0.782(3)	1.47(2)	0.308(4)	0.63(2)	2.05(2)
0.10	3.2849(3)	0.238(3)	0.777(3)	1.41(2)	0.306(4)	0.60(2)	2.13(2)
0.15	2.6400(3)	0.234(3)	0.779(3)	1.43(2)	0.300(4)	0.61(2)	2.11(2)
0.20	1.9548(3)	0.219(3)	0.771(3)	1.37(2)	0.284(4)	0.59(2)	2.20(2)
0.24	1.3395(3)	0.127(3)	0.750(3)	1.13(2)	0.170(4)	0.50(2)	2.66(2)

Таблица 2. Значения критических индексов и критических температур

декса z близко к теоретически предсказанному значению для анизотропных магнетиков (z = 2, модель A [6]). Далее картина меняется: с ростом параметра фрустрации α увеличивается отклонение критических индексов от величин, характерных для диапазона $0.001 \le \alpha \le 0.15$. Соответственно, значения индексов β , ν и z вблизи точки фрустрации уже не соответствуют классической трехмерной модели Изинга.

На наш взгляд, такой характер критического поведения связан с тем, что при приближении к точке фрустрации $\alpha = 0.25$ в системе с ростом конкурирующих взаимодействий возрастают локальные флуктуации, которые начинают оказывать заметное влияние на характер критического поведения исследуемой модели. Данный результат несколько противоречит выводам работы [2], авторы которой говорят, что вдоль всей линии фазового перехода второго рода между ферромагнитной и парамагнитной фазами значения статических критических индексов соответствуют классу универсальности трехмерной классической модели Изинга.

На рисунке 5 приведена фазовая диаграмма модели Изинга с конкурирующими взаимодействиями в диапазоне $0.001 \le \alpha \le 0.24$. Как видно из графика 5, полученные нами значения качественно хорошо согласуются с теоретическими результатами, полученными с применением теории эффективного поля [1]. При этом количественно совпадают с результатами работы [2], полученными методами вычислительной физики.

Результаты нашей работы демонстрируют хорошее согласие с результатами других авторов, что говорит об эффективности применения метода коротковременной динамики к изучению критических свойств моделей с конкурирующими взаимодействиями. При этом дискуссионным остается вопрос влияния фрустраций на характер критического поведения вдоль линии фазовых переходов, особенно вблизи точки фрустрации. Отметим, что значения динамического критического индекса z для данной модели вычислены впервые.

Рис. 5. Фазовая диаграмма модели Изинга с конкурирущими взаимодействиями. Пунктирная линия – результаты работы [1]; • – результаты работы [2]; • – наши результаты; F – ферромагнитная фаза; P – парамагнитная фаза

- R. A. dos Anjos, J. R. Viana, J. R. de Sousa, and J. A. Plascak, Phys. Rew. E 76, 022103 (2007).
- O. D. R. Salmon, N. Crokidakis, M. A. Neto, I. T. Padilha, J. R. Viana, and J. R. de Sousa, Int. J. Mod. Phys. B 27(26), 1350162 (2013).
- A. Jaster, J. Mainville, L. Schulke, and B. Zheng, E-Print arXiv: cond-matt/9808131 v1 (1998).
- 4. B. Zheng, Physica A 283, 80 (2000).
- V. V. Prudnikov, P. V. Prudnikov, B. Zheng, S. V. Dorofeev, and V. Yu. Kolesnikov, Prog. Theor. Phys. 117, 973 (2007).
- V. A. Mutailamov and A. K. Murtazaev, J. Mag. Magn. Mater. **325**, 122 (2013).
- А. К. Муртазаев, В. А. Мутайламов, ЖЭТФ 143, 695 (2013).
- В. А. Мутайламов, А.К. Муртазаев, Письма в ЖЭТФ 102(1), 56 (2015).
- P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
- H.K. Janssen, B. Schaub, and B. Schmittmanm, Z. Phys. B **73**, 539 (1989).
- 11. D.P. Landau, Physica A 205, 41 (1994).

Письма в ЖЭТФ том 108 вып. 1-2 2018