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Linear NMR in the polar phase of 3He in aerogel
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3He is an example of the system with non-trivial

Cooper paring. A few superfluid phases are known in

this system. Recently the new one, the polar phase,

have been observed in 3He confined in nematically or-

dered aerogel [1]. A number of various topological de-

fects including half-quantum vortices can exist in the

polar phase. Half-quantum vortices have been originally

predicted for A-phase in [2] but have not been observed

in experiments. This is because of energetically unfavor-

able solitons which should always connect half-quantum

vortex pairs in the A-phase. In the polar phase of 3He

in aerogel there are no such solitons if the magnetic field

is parallel to aerogel strands. Also vortices in the polar

phase are strongly pinned and cannot move when the

field is tilted and solitons appear. In our experimental

work [3] half-quantum vortices were created by rotat-

ing the 3He sample. Then magnetic field was tilted and

spin waves localized in solitons were observed by nuclear

magnetic resonance (NMR). In this paper we develop a

theory for textures, topological defects and spin dynam-

ics in the polar phase of 3He. We also present results of

numerical simulations of spin waves in the presence of

half-quantum vortices.

We are studying the polar phase of 3He in nemati-

cally ordered aerogel. The order parameter in this sys-

tem ([4]) is

Aaj =
1√
3
∆ eiϕdalj , (1)

where ϕ is the phase, and d and l are unit vectors in

spin and orbital spaces, respectively. The orbital unit

vector l is directed along the aerogel strands and can

not move. There are three components of the Hamilto-

nian which are important for spin dynamics: magnetic

energy, energy of spin-orbit interaction and gradient en-

ergy:
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where S is spin and H is the magnetic field. Suscepti-

bility χab is anisotropic, the axis of anisotropy is d and

minimum of the magnetic energy corresponds to S ⊥ d.

We use a coordinate system where H ‖ ẑ and l is

in ẑ− ŷ plane (see Fig. 1a):

H = ẑH, l = ŷ sinµ+ ẑ cosµ,

d = (x̂ cosα+ ŷ sinα) sin β + ẑ cosβ. (3)

Fig. 1. (Color online) (a) – Angles, used in the texture

calculations. (b) – The half-quantum vortex and the spin

vortex in the polar phase of 3He. Vector l is perpendic-

ular to the picture plane. Angle α = 0 is changing by π

between upper and lower parts of the picture. This can be

done via either a d-soliton or a π jump in the phase (which

is shown by color gradient)
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Here µ is angle between l and magnetic field, this

angle is set by the experimental setup because direc-

tion of l is determined by aerogel; β is angle between d

and the field; α is azimuthal angle of d in the plane,

perpendicular to the magnetic field.

There are two characteristic scales introduced by en-

ergies (2). Ratio of magnetic and gradient energies gives

the magnetic length ξH and ratio of spin-orbit and gra-

dient energies gives the dipolar length ξD. Since the gra-

dient energy is anisotropic, we have different values in

directions perpendicular and parallel to the l vector:

ξ2Hjk =
Kjk∆

2

H2(χ⊥ − χ‖)
, ξ2Djk =

Kjk

4gD
, (4)

where Kjk = K1δjk + (K2 +K3)lj lk.

In the high-field limit ξD ≫ ξH magnetic energy is

in the minimum everywhere excluding small regions of

the ξH size (for example cores of spin vortices). The

small volume of this regions makes them invisible in

NMR experiments. In the rest of the volume β = π/2

and only variations of α are important.

By minimizing the energy (2) with the order param-

eter (1) we find equation for the distribution of α:

ξ̄2jk ∇j∇kα =
1

2
sin 2α,

where ξ̄jk =
ξDjk

sinµ
. (5)

In the case of H ‖ l (or µ = 0) there is no length

scale in this problem. d can freely move in the plane per-

pendicular to the field and only the gradient term is im-

portant. Tilting the magnetic field from the l direction

makes the length ξ̄ finite. In the tilted field the equation

for the texture has a form of static sine-Gordon equa-

tion. It has two uniform solutions with α = 0 and α = π.

Transition between these solutions is a d-soliton. In one-

dimensional case it has the form:

α(x) = 2 arctan
(

exp(x/ξ̄)
)

, (6)

where ξ̄ depends on the soliton orientation: if x coordi-

nate goes perpendicular or parallel to l, it should be ξ̄⊥
or ξ̄‖, respectively.

Looking at the order parameter formula (1) one can

see that there can be also a half-quantum vortex, in

which both vector d and phase φ rotate by π around

the vortex line. This is possible because Aαj(d, φ) =

Aαj(−d, φ+π). In the tilted magnetic field one d-soliton

should end at the half-quantum vortex. The texture can

also form a spin vortex in which vector d rotates by 2π

around the vortex line. In this case two d-solitons should

end at this vortex. On Figure 1b both types of vortices

are shown.

Linearized spin dynamics is described by equation:

(ω2 − ω2
L)s+ = Ω2

P

{

cos2 µ− sin2 α sin2 µ
}

s+ −

− c2jk

{

−
(∇

i
+∇α

)2

jk

+ (∇α)2jk

}

s+, (7)

where s+ = (sx + isy)/
√
2 is a complex deviation of

spin from the equilibrium value. This is similar to the

equation of motion of a charged particle in a magnetic

field with a vector potential A = ∇α. The “magnetic

field” ∇ × A is zero everywhere except half-quantum

vortex cores but it affects the motion of the spin wave

because of Aharonov-Bohm effect [5]. This effect for

half-quantum vortices in 3He-A is discussed in [6].

Equation (7) can be used to find an NMR frequency

in a uniform texture as well as a frequency of a spin-

wave localized in the d-soliton (6):

ωu =
√

ω2
L +Ω2

P cos2 µ, (8)

ωs =
√

ω2
L +Ω2

P cos 2µ. (9)

These two frequencies have been observed in NMR ex-

periment in [3].

To study d-solitons with finite length and interaction

between d-solitons we do a 2D numerical simulation of

texture and spin waves. Five structures have been cal-

culated: a single soliton between two half-quantum vor-

tices with a length D; A periodic structures of infinite

solitons with the period D and same or alternating soli-

ton orientations; the combination of both effects, peri-

odic structures of finite solitons with equal length and

period D (this corresponds to a square lattice of vor-

tices). For large values of structure dimension D calcu-

lated frequency coincides with (9). Noticeable deviations

appear only when D is comparable with ξ̄.

Full text of the paper is published in JETP Letters

journal. DOI: 10.1134/S0021364018180029

1. V.V. Dmitriev, A.A. Senin, A.A. Soldatov, and

A.N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).

2. G.E. Volovik and V.P. Mineev, JETP Lett. 24, 561

(1976).

3. S. Autti, V.V. Dmitriev, V.B. Eltsov, J. Mäkinen,
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