Аморфизация и полиморфный переход бора, стимулированные высокими динамическими давлениями

 $A. M. Молодец^{1}, A. A. Голышев$

Институт проблем химической физики РАН, 142432 Черноголовка, Россия Поступила в редакцию 1 августа 2018 г. После переработки 13 августа 2018 г.

Исследованы структурные превращения поликристаллического бора в условиях ступенчатого ударного сжатия мегабарного диапазона давлений. Проведены ударноволновые эксперименты по сжатию и последующему сохранению поликристаллических образцов β -ромбоэдрического бора β -В $_{106}$. Рассчитаны термодинамические состояния бора в условиях выполненных экспериментов. Согласно расчетам, величина максимальных давлений в образцах составляла 115 ГПа. Выполнена рентгеновская дифрактометрия сохраненных образцов бора. Показано, что в результате динамического сжатия поликристаллического β -В $_{106}$ до 115 ГПа происходит его частичная аморфизация и превращение в тетрагональную модификацию бора Т-В $_{192}$.

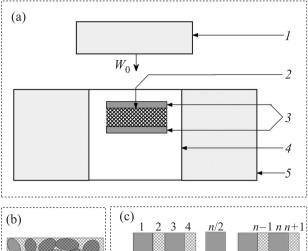
DOI: 10.1134/S0370274X18180121

1. Введение. Как хорошо известно, твердая фаза бора существует в форме нескольких кристаллических модификаций, а также в аморфном и стеклообразном состоянии. При изменении температур и давлений модификации бора испытывают многочисленные взаимные превращения (см. [1-3] и ссылки в них). В частности, при статическом сжатии выше $10\,\Gamma\Pi a$ и нагреве до $2280\,\mathrm{K}$ ромбоэдрический бор β - B_{106} превращается в тетрагональную фазу Т- B_{192} [1]. Аморфный бор при атмосферном давлении превращается в ромбоэдрический бор β - B_{12} или в ромбоэдрический бор β -B₁₀₆, а при повышенной до 1400 K температуре может превращаться в тетрагональный бор Т-В₅₂ [2]. Наоборот, при мегабарных давлениях и комнатной температуре происходит аморфизация ромбоэдрического бора β -B₁₀₆ [3].

Физико-химические превращения бора при высоких динамических давлениях и температурах исследованы в меньшей степени, чем при статических. В контексте данной работы отметим работу [4]. В [4] измерена эволюция электропроводности бора при ударном сжатии и на основе полученных результатов сделано предположение о том, что при мегабарных давлениях ударноволнового нагружения поликристаллический бор также испытывает аморфизацию. Цель представляемой статьи заключалась в экспериментальном подтверждении этого предположения путем дифрактометрического изучения образцов, испытавших сильное ударноволновое воздействие.

2. Материал, образцы и методика эксперимента. Ударному нагружению подвергались порошки, изготовленные механическим измельчением поликристаллических образцов β -ромбоэдрического бора β-В₁₀₆. Измельчение осуществлялось следующим способом. Сантиметровые частицы поликристаллического бора помещались в конверт из медной фольги и затем дробились вручную. Такой способ гарантировал минимальное загрязнение получаемого порошка. Возможное загрязнение частицами меди, если и имело место, то оказывалось за пределами чувствительности рентгеноструктурного анализа. Исходные образцы ромбоэдрического бора β - B_{106} (производитель Alfa Aesar) чистотой 99.5% содержали следующие примеси: Al-0.017 %, Fe-0.05 %, Mn-0.01 %, Si-0.05 %, C-0.292 %, N-0.001 %, O-0.076 %. Начальная плотность частиц порошка поликристаллического бора составляла $\rho_0 = 2.25(5) \, \Gamma/\mathrm{cm}^3$. Начальная плотность порошкообразного образа составляла $\rho_{00} = 1.25(5) \, \Gamma/\text{см}^3$. Основная фракция порошка состояла из частиц размером $\delta \sim 0.02\,\mathrm{mm}$.

Сохранение образцов проводилось с использованием техники и ампул сохранения из [5], которые обеспечивают цикл ступенчатого ударного сжатия и разгрузки исследуемых образцов. На рисунке 1а представлена схема ударноволнового нагружения и последующего сохранения образцов. Ударноволновое нагружение экспериментальной сборки осуществлялось ударом металлического (нержавеющая сталь 18-10) ударника 1 толщиной 3.5 мм, разогнанного до скорости $W_0 = 2.6(1)$ км/с продуктами взрыва заря-


¹⁾e-mail: molodets@icp.ac.ru

да взрывчатого вещества, аналогично [4, 5]. Образец 2 помещался между двумя вольфрамовыми дисками 3 толщиной $1.4\,\mathrm{mm}$ и диаметром $24\,\mathrm{mm}$. Толщина порошкообразного образца составляла $\sim 1\,\mathrm{mm}$. Полученная "слойка" вставлялась в специальное углубление в ампуле сохранения 4 так, чтобы толщина крышки (закрывающего слоя со стороны удара) ампулы составляла $5\,\mathrm{mm}$. Толщина дна и диаметр ампулы сохранения составляла $\sim 35\,\mathrm{mm}$. Ампула сохранения вставлялась в охранное стальное кольцо $5.\,\mathrm{mm}$

Соотношение геометрических размеров ударника и образца обеспечивало одномерные условия нагружения в ударноволновом импульсе. Однократная ударная волна, генерируемая ударником в крышке ампулы сохранения, в дальнейшем превращалась в ступенчатый профиль — серию последовательных ударных волн. Такой режим ступенчатого ударного сжатия обусловлен реверберацией волн сжатия между границами раздела материалов с различными динамическими жесткостями. Прохождение ступенчатого профиля через порошкообразный образец сопровождается осциллирующим характером нагрузки монолитных частиц порошка. Эти осцилляции обусловлены реверберацией волн сжатия и разгрузки внутри отдельных монолитных частиц.

Отмеченные особенности динамического нагружения порошкообразного образца в схеме рис. 1а и термодинамическая история нагружения моделировались в рамках одномерного гидрокода [6], опирающегося на разработанные ранее уравнения состояния материалов экспериментальной сборки: монолитного β -ромбоэдрического бора из [4], меди и вольфрама из [7], нержавеющей стали из [8]. Порошкообразный образец бора (см. рис. 1b), состоящий из трехмерных частиц, моделировался набором пластин (см. рис. 1c) толщиной δ , разделенных промежутками шириной $\gamma = \delta(p-1)$, где $p = \rho_0/\rho_{00}$ [9]²).

На рисунке 2а показан модельный профиль давления в частице-пластине слоистого образца бора в условиях эксперимента по схеме рис. 1. Этот профиль демонстрирует ступенчатый и осциллирующий характер сжатия частиц порошкообразного образца в экспериментах. Модельный профиль давления на рис. 2а имеет своим прототипом реальные волновые взаимодействия в трехмерных частицах, и поэтому в первом приближении может служить реалистической оценкой термодинамической истории нагруже-

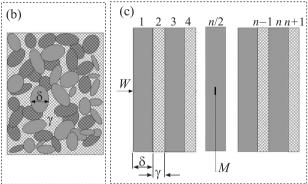


Рис. 1. Постановка экспериментов по ударноволновому нагружению и сохранению образцов (а), схема трехмерного порошкообразного образца (b) и его пластинчатая модель (c). (a) -1 – стальной пластинчатый ударник, имеющий скоростью W_0 2 – образец; 3 – вольфрамовые наковальни; 4 – медная ампула сохранения; 5 – стальное охранное кольцо. (b) – δ – преимущественный линейный размер трехмерной частицы; γ – наполнитель, в котором находятся частицы (в данном случае вакуум). (c) $-1, 3, 5, \ldots, n$ – двумерные частицы-слои толщиной δ ; 2, 4, 6, ..., n+1 – слои материала наполнителя с начальной толщиной $\gamma = \delta(p-1); M$ – маркер, указывающий частицу слоя, для которой выводятся профили ее термодинамических параметров давления P(t), температуры T(t) в зависимости от времени t; W — направление удара

ния монолитных частиц порошкообразного образца исследуемого материала.

На рисунке 2b представлена расчетная фазовая траектория I для частиц бора в экспериментах, на фоне фазовой диаграммы бора из [10]. Как видно, максимальные давления достигали $P_m \sim 115\,\Gamma$ Па. При этом фазовая траектория многократно пересекает линии равновесия β -B $_{106}\leftrightarrow \alpha$ -B $_{12}$ и α -B $_{12}\leftrightarrow \gamma$ -B $_{28}$. Пересечение линии равновесия γ -B $_{28}\leftrightarrow \alpha$ -Ga происходит однократно. Максимальная температура достигала величины $T_m \sim 1100\,\mathrm{K}$, остаточная температура частиц бора составляла $T_r \sim 800\,\mathrm{K}$.

 $^{^{2)}}$ В [9] допущена опечатка в значении коэффициента C_2 для молибдена из табл. 1: вместо неправильной цифры $C_2=516.620$ следует использовать значение $C_2=5156.620$.

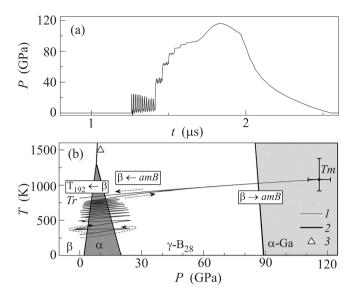


Рис. 2. Зависимость давления P от времени t (профиль давления) нагружающего импульса сжатия (а) и фазовая траектория ступенчатого ударного сжатия бора до давлений 115 ГПа и температур 1100 К на фазовой диаграмме бора из [10] в координатах давление P температура T(b). (b) – 1 – расчетная траектория ступенчатого ударного сжатия до максимальных значений P_m и T_m и разгрузки до температуры T_r ; 2 – линии равновесия кристаллических модификаций бора из [10]; 3 – область превращения $\beta ext{-B}_{106} o ext{T-B}_{192}$ из [1]. Греческими буквами обозначены, в соответствии с [10], аллотропные модификации бора: ромбоэдрический β-В₁₀₆, ромбоэдрический α - B_{12} , ромбический γ - B_{28} и металлический α-Ga. Горизонтальными стрелками обозначен предполагаемый маршрут струткурных изменений бора в ударноволновом цикле сжатие-разгрузка. Пунктирными стрелками на рис. 2b указаны направления изменения давления в соответствии с эволюцией давления на рис. 2а

Отметим, что помимо упрощающего представления формы частиц, в расчетах не учитывались возможные фазовые превращения при пересечении фазовыми траекториями линий равновесия аллотропных модификаций бора на рис. 2b. Однако основная погрешность в расчетах температуры и давления определяется погрешностью скорости ударника $W_0 = 2.6(1) \, \mathrm{km/c} \sim \pm 10 \, \%$ и приближенной формулы учета электронной составляющей свободной энергии в [4] для температуры $\sim +20 \, \%$. Общая погрешность расчетов оценивается на уровне $\pm 5 \, \Gamma \Pi a$ для максимального давления и $-100 \, \mathrm{K}$, $+300 \, \mathrm{K}$ для максимальной температуры и указана крестом на рис. 2b.

Отметим также фактор неравновесного разогрева образца при ударноволновом нагружении, который не предусматривается используемой математи-

ческой моделью. Речь идет о взаимных соударениях реальных трехмерных частиц порошкообразного образца, заведомо сопровождающихся их трехмерной пластической деформацией, разрушением, образованием кумулятивных струй и т.д. Все эти процессы с необходимостью приводят к дополнительным локальным разогревам образца. Поэтому верхняя граница температуры на рис. 2b является заниженной. Получение оценки этой части неравновесного разогрева в виде цифры в настоящее время затруднительно. Поэтому в дальнейшем максимальные температуры указываются в виде $T_m \sim 1000-1400\,\mathrm{K}.$

Извлеченная из охранного кольца ампула сохранения обрабатывалась на токарном станке так, чтобы обеспечить доступ к образцу. Образец бора после ударноволнового нагружения вручную измельчался для исследования на рентгеновском дифрактометре. Спектроскопический анализ образцов проводился в АЦКП ИПХФ (Аналитическом центре коллективного пользования Института проблем химической физики) РАН. При этом рентгеновская дифрактометрия осуществлялась на приборе ДРОН-3М с использованием СuK_{α} излучения с длиной волны $\lambda=1.5406\,\text{Å}$.

3. Результаты эксперимента и их обсуждение. На рисунке 3 показаны дифрактограммы образцов кристаллического бора, сохраненных после ударноволнового нагружения (а) и в исходном состоянии (b). Сопоставление этих дифрактограмм позволяет заключить, что ударноволновая обработка приводит к кардинальным изменениям кристаллической структуры бора. Обсудим эти изменения детальнее.

Заметим предварительно, что интенсивные узкие пики, отмеченные на рис. 3 вертикалями 1 и 2, обусловлены частицами меди и частицами вольфрама, попавшими в образец во время ударноволновой обработки. Остальные пики на дифрактограмме (а) могут принадлежать как новым фазам бора, так и боридам меди или вольфрама. Проанализируем дифрактограмму (а) раздельно в диапазоне $10^{\circ} < \theta < 35^{\circ}$ (см. рис. 4) и в диапазоне $40^{\circ} < \theta < 80^{\circ}$ (см. рис. $40^{\circ} < \theta < 80^{\circ}$).

Отметим, что в области углов $10^{\circ}-35^{\circ}$ дифрактограмма (а) на рис. 4 не содержит рефлексов, совпадающих с рефлексами борида вольфрама WB₄ из [11] или борида меди CuB₂₄ из [12]. Таким образом, все рефлексы дифрактограммы (а) на рис. 4 принадлежат бору, испытавшему ударноволновое воздействие. Сравнивая эту дифрактограмму с дифрактограммой (b) исходного образца, отметим, что интенсивность большинства пиков исходного образца бора уменьшается вплоть до полного исчезновения. Во-вторых, появляются новые пики, свидетельствующие о необ-

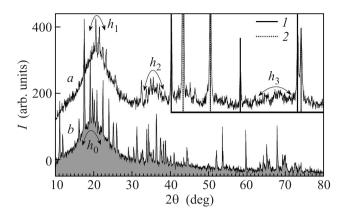


Рис. 3. Дифрактограммы образцов порошкообразного бора после ударного нагружения до $115\,\Gamma\Pi a$ (a) и в исходном (до нагружения) состоянии (b). 1 – местоположение дифракционных пиков частиц вольфрама; 2 – местоположение дифракционных пиков частиц меди. Изогнутыми стрелками отмечены галообразные рефлексы h_0 - h_3 на дифрактограммах

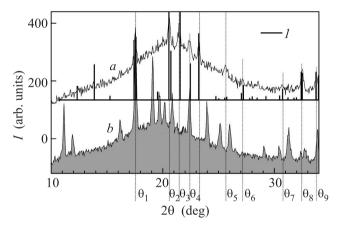


Рис. 4. Дифрактограмма образцов бора (a) и (b) рис. 3 в диапазоне брэгговских углов $10^{\circ}-35^{\circ}$. 1 – местоположения дифракционных максимумов тетрагональной модификации бора Т-В₁₉₂ из [13, 14]; θ_2 , θ_3 , θ_4 , θ_5 , θ_6 , θ_7 , θ_8 , θ_9 – местоположения новых дифракционных пиков в сохраненных образцах бора

ратимом полиморфном превращении бора при ударном сжатии. Наконец, заметим, что местоположение большинства новых пиков (см. значения брэгговских углов $\theta_1 - \theta_9$ на рис. 4) совпадает с местоположением пиков для тетрагональной модификации бора $T\text{-}B_{192}$ из [13, 14]. Эти факты вместе с расчетными результатами позволяют сделать вывод о том, что ударноволновое нагружение поликристаллического β -бора мегабарными динамическими давлениями до 115(5) ГПа и температур до $\sim 1000-1400\,\mathrm{K}$ приводит к превращению ромбоэдрического β -бора в тетрагональную модификацию бора $T\text{-}B_{192}$.

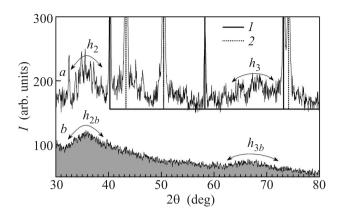


Рис. 5. Дифрактограммы образцов порошкообразного бора (а) рис. 3 в сравнении с дифрактограммой аморфного бора (b). h_2 , h_3 — галообразные рефлексы сохраненного образца бора, h_{2b} , h_{3b} — галообразные рефлексы аморфного бора; 1 — местоположение дифракционных пиков вольфрама, 2 — местоположение дифракционных пиков меди

Обсудим далее галообразные рефлексы дифрактограммы образцов бора. Дифрактограмма сохраненного образца (а) на рис. 3, помимо исходного гало $h_1 \sim h_0$ содержит два новых широких гало h_2 и h_3 , характерных для аморфного состояния. Этот участок дифрактограммы сопоставлен с фрагментом дифрактограммы, не подвергавшегося нагружению аморфного бора в диапазоне $30^{\circ} < \theta < 80^{\circ}$ на рис. 5. Как видно, местоположение и ширина гало h_2 и h_3 дифрактограммы (а) совпадает с аналогичными характеристиками h_{2b} и h_{3b} дифрактограммы (b) аморфного бора. Этот факт позволяет заключить, что в результате динамического сжатия кристаллического β -ромбоэдрического бора до давлений $\sim 115 \, \Gamma \Pi a$ и температур $\sim 1000 - 1400 \, \mathrm{K}$ происходит его частичная аморфизация.

Рассмотрим возможный маршрут превращения поликристаллического β -бора в тетрагональный бор Т-В₁₉₂ при ступенчатом ударном сжатии и последующей разгрузке (см. рис. 2b). Можно предположить, что на начальном участке фазовой траектории 1 ромбоэдрический бор β - B_{106} остается в метастабильном состоянии не только при многократном пересечении линий равновесия β - $B_{106} \leftrightarrow \alpha$ - B_{12} и α - $B_{12} \leftrightarrow \gamma$ - B_{28} , но и в области существования ромбического бора у- B_{28} . Однако в области давлений 90–115 ГПа и температур $\sim T_m$ по аналогии с [3] происходит аморфизация β -B₁₀₆ o amВ. Затем в волне разгрузки при давлениях 20–30 ГПа и температурах $\sim T_r$ часть аморфного бора превращается (аналогично [2]) в β - B_{106} и, наконец, по аналогии с [1], при давлениях 10 ГПа и температурах $\sim T_r$ (см. треугольник на рис. 2b) происходит последовательное превращение β -B $_{106} \rightarrow$ T-B $_{192}$. Очевидно, рассмотренный маршрут превращений бора носит преимущественно умозрительный характер. Однако состоятельность этого предположения может быть проверена экспериментально путем вариации максимальных давлений и температур ступенчатого ударного сжатия.

В заключение отметим, что в соответствии с рис. 2a, b состояние бора находилось в высокотемпературной области существования фазы γ - B_{28} почти половину времени динамического сжатия. Поэтому можно было ожидать, что на фоне относительно больших времен и больших энергий ударного сжатия произойдет переход фазы β - B_{106} в фазу γ - B_{28} . Однако в пределах чувствительности используемого прибора рефлексы ромбического γ - B_{28} бора [10,15] на дифрактограммах сохраненных образцов не обнаружены. Этот факт может характеризовать устойчивость фазы β - B_{106} не только при статических, но и при динамических давлениях.

4. Заключение. Проведены эксперименты по нагружению и последующему сохранению порошкообразных образцов поликристаллических образцов β -ромбоэдрического бора β -В $_{106}$ в условиях высоких давлений ступенчатого ударного сжатия.

Получены расчетные данные об изменении давления и температуры β -ромбоэдрического бора β -B₁₀₆ в условиях ступенчатого ударного сжатия в диапазоне давлений до 115 ГПа и температур до $\sim 1000-1400\,\mathrm{K}$.

Показано, что в результате динамического сжатия кристаллического β -ромбоэдрического бора β -В $_{106}$ до давлений 115 ГПа и температур $\sim 800-1400~\mathrm{K}$ наряду с частичной аморфизацией происходит превращение β -ромбоэдрического бора β -В $_{106}$ в тетрагональную модификацию Т-В $_{192}$.

Работа выполнена в рамках Государственного задания # 0089-2014-0016 с использованием оборудования уникальной научной установки "Экспериментальный взрывной стенд" и АЦКП ИПХФ РАН.

- Y.Z. Ma, C.T. Prewitt, G.T. Zou, H.K. Mao, and R. J. Hemley, Phys. Rev. B 67, 174116 (2003).
- O.O. Kurakevych, Y. Le Godec, T. Hammouda, and C. Goujon, High Pressure Research 32, 30 (2012).
- D. N. Sanz, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 89, 245501 (2002).
- 4. А. М. Молодец, А. А. Гольшев, Д. В. Шахрай, В. В. Ким, ФТТ **59**, 1399 (2017).
- А. М. Молодец, А. А. Голышев, ЖЭТФ 153, 930 (2018).
- 6. В. В. Ким, А. А. Голышев, Д. В. Шахрай, А. М. Молодец, Труды XI Междунар. конф. "Забабахинские научные чтения", Снежинск (2012); http://www.vniitf.ru/images/zst/2012/s6/6-24.pdf.
- 7. А. А. Голышев, В. В. Ким, А. Н. Емельянов, А. М. Молодец, Прикладная механика и техническая физика **56**, 92 (2015).
- 8. А. М. Молодец, ФТТ 57, 1992 (2015).
- А. М. Молодец, В. В. Ким, А. Н. Емельянов, ЖТФ 84, 82 (2014).
- A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko, Nature 457, 863 (2009).
- A. T. Lech, C. L. Turner, R. Mohammadi, S. H. Tolbert, and R. B. Kanera, PNAS 112, 3223 (2015).
- 12. I. Higashi, Y. Takahashi, and T. Atoda, Journal of the Less-Common Metals **31**, 199 (1974).
- 13. M. Vlasse, R. Naslain, J.S. Kasper, and K. Ploog, J. Solid State Chem. 28, 289 (1979).
- 14. А.А. Куракевич, Сверхтвердые материалы **3**, 3 (2009).
- 15. R. H. Wentorf, Jr. Science **147**(3653), 49 (1965).