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Metamorphoses of electron systems hosting a fermion condensate
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We present a theory of interaction-induced flat
bands, emergent in strongly correlated electron systems
beyond a critical point, at which the topological sta-
bility of the Landau state breaks down, and apply this
theory to analysis of phenomena that, seemingly, have
little in common, including: (i) a specific metal-insulator
transition with formation of the so-called quantum elec-
tron solid state in two-dimensional electron liquid, re-
siding in MOSFETs and SiGe/Si/SiGe quantum wells,
(ii) a second-order high-temperature superconducting
phase transition in copper oxides, whose critical tem-
perature Tc turns out to be proportional to the Fermi
energy TF = p2

F
/2me and (iii) non-Fermi-liquid low-

temperature chaotic-like behavior of many strongly cor-
related electron systems, documented in experimental
studies of their resistivity ρ(T ) for two last decades.
We propose that both these transitions are triggered
by a spontaneous topological rearrangement of the con-
ventional Landau state that consists in formation of a
so-called fermion condensate (FC) [1–3], an interaction-
induced flat portion ǫ(p) = 0 of the single-particle
spectrum ǫ(p). The analogy with a boson condensate
(BC) is evident from the respective densities of states
ρFC(ε) = nFCδ(ε) and ρBC(ε) = nBCδ(ε), where nFC

and nBC denote the fermion and boson condensate den-
sities. A distinctive feature of electron systems, harbor-
ing such flat bands, is the presence of a finite classical-

like entropy excess S0 = S(T = 0) ∝ nFC obtained
upon substituting a zero-temperature FC momentum
distribution 0 < n∗(p) < 1 into the textbook Landau
formula.

The original model of fermion condensation was in-
troduced and analyzed in [1–3] more than 25 years ago.
With further theoretical development, evidence for its
essential role in coherent explanation of diverse non-
Fermi-liquid behavior across a broad range of strongly
correlated Fermi systems at low temperatures, has since
been presented in numerous works, notably [1–10]. A
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significant advance toward a self-consistent theory of
fermion condensation has been made in microscopic
calculations based on a Hubbard model, performed in
[11, 12] using well-established renormalization-group
methods. In addition, the original FC formalism was
recently updated [13] to properly account for interac-
tions between the FC and normal quasiparticles that
has made it possible to explain the topological na-
ture of the metal-insulator transition in two-dimensional
high-mobility electron systems of SiGe/Si/SiGe quan-
tum wells [14–16].

The recent “second wind” of the original FC scenario
has received specific impetus from the rapid progress in
experimental (e.g., see [17–20]) and theoretical [21, 22]
studies of doped monolayer graphene and, especially,
twisted bilayer graphene, where flattening of the single-
particle spectrum ǫ(p) can be engineered. In particular,
in a recent experimental paper [23], the manifestation of
interaction-induced flat bands in the electron system of
monolayer graphene has been documented for the first
time. It is also expected [24, 25] that the dispersionless
FC spectrum with singular density of states is the trig-
ger for possible granular room-temperature supercon-
ductivity in highly oriented pyrolitic graphite [26, 27]
(and references therein).

In dealing with 2D strongly correlated low-density
homogeneous electron liquid of MOSFETs we focus on
a specific metal-insulator transition uncovered long ago
in [28, 29], the nature of which remains unexplained
yet. We demonstrate that proper accounting for interac-
tions between normal quasiparticles and the FC, emer-
gent at densities n, lower than the critical density nt,
at which the topological stability of the original Lan-
dau state breaks down, results in formation of a spe-
cific non-BCS gap Υ(p) in the single-particle spectrum,
whose magnitude changes linearly with variation of the
difference nt − n. It is such a behavior of the activa-
tion energy that has been uncovered in measurements
of the electrical resistivity of MOSFETs just in this
density region [15] that reveals the topological nature
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of this transition. Since none of Pomeranchuk stability
conditions breaks down, homogeneity of systems under
consideration persists, in agreement with the structure
of the so-called quantum-electron-solid state uncovered
in [14–16]. One might expect that these behaviors, re-
vealed in MOSFETs, will be verified experimentally for
SiGe/Si/SiGe quantum wells in near future.

Turning to high-Tc superconductors, the two-gap
structure (∆,Υ) of their single-particle spectra has been
discussed. The gap ∆ associated with Cooper pairing
is distinguished by a non-BCS linear relation between
the critical temperature Tc and Fermi energy TF . Com-
parison of theoretical results with available ARPES
data [30] demonstrates that our theory properly de-
scribes the angular structure of both the gaps ∆(p) and
Υ(p). Moreover, it properly explains the interplay be-
tween the two gaps on different sides of the T −x phase
diagram of cuprates, including emergence of an optimal
doping xo at which the BCS critical temperature Tc(x)
reaches maximum.

A linear in temperature T behavior of the normal-
state resistivity ρ(T ) of high-Tc superconductors, uncov-
ered more than 20 years ago and still defying theoretical
explanation, is attributed to scattering of light carriers
by the FC. Because the properties of superconducting
states of systems having a FC are unambiguously re-
lated to those of normal states, it is not surprising that
such seemingly antagonistic characteristics as the crit-
ical temperature Tc(x) and the coefficient A1(x) spec-
ifying the linear-in-T part of the normal-state resistiv-
ity ρ(T ), show similar behavior, as experiment demon-
strates [31].

It is worth stressing that exhibitions of quantum
chaos, discussed in our article, have the topological na-
ture, associated with the respective spontaneous rear-
rangement of the Landau state. This is quite in contrast
to a model [32] in which, despite something in com-
mon with the scenario of fermion condensation [33], the
chaotic element is introduced deliberately in terms of the
respective distribution of interaction matrix elements.

Full text of the paper is published in JETP Letters
journal. DOI: 10.1134/S0021364020020010
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