Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 93-112
   Volumes 113-119
      Volume 119
      Volume 118
      Volume 117
      Volume 116
      Volume 115
      Volume 114
      Volume 113
Search
VOLUME 113 (2021) | ISSUE 3 | PAGE 210
Proximity effect in heterosructures based on superconductor/half-metal system
Abstract
We demonstrated that with increasing the exchange splitting of the conduction band of a ferromagnet and, respectively, of the degree of the spin polarization, the probability of transmission of the superconducting Cooper pairs through the S/F interface decreases. We concluded that the spin imbalance plays a key role in the processes taking place at the interface between a superconductor and a ferromagnet with spin-polarized conduction electrons. We have studied the superconducting spin-valve effect in F1/F2/S heterostructures containing the Heusler alloy Co2Cr1-xFexAly as one of two ferromagnetic (F1 or F2) layers. We used the Heusler alloy layer in two roles: as a weak ferromagnet on the place of the F2 layer and as a half-metal on the place of the F1 layer. In the first case, we obtained the full switching between the normal and superconducting states is realized with the dominant aid of the long-range triplet component of the superconducting pair condensate which occurs at the perpendicular mutual orientation of magnetizations. In the second case, we observed separation between the superconducting transitions for perpendicular and parallel configurations of magnetizations reaching 0.5 K. We also find a good agreement between our experimental data and theoretical results.