For authors
Submission status

Archive (English)
      Volume 116
      Volume 115
      Volume 114
      Volume 113
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
VOLUME 113 | ISSUE 4 | PAGE 274
Holographic model of exciton condensation in double monolayer Dirac semimetal
In this paper we consider holographic model of exciton condensation in double monolayer Dirac semimetal. Exciton is bound states of an electron and a hole. Being Bose particles, excitons can form a Bose-Einstein condensate. We study formation of two types of condensates. In first case both the electron and the hole forming the exciton are in the same layer (intralayer condensate), in the second case the electron and the hole are in different layers (interlayer condensate). We study how the condensates depend on the distance between layers and the mass of the quasiparticles in presence of a strong magnetic field. In order to take into account possible strong Coulomb interaction between electrons we use holographic appoach. The holographic model consists of two D5 branes embedded into anti de Sitter space. The condensates are described by geometric configuration of the branes. We show that the distance between layers at which interlayer condensate disappears decreases with quasiparticle mass.