For authors
Submission status

Archive (English)
      Volume 117
      Volume 116
      Volume 115
      Volume 114
      Volume 113
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
VOLUME 113 | ISSUE 11 | PAGE 729
Aharonov-Bohm interferometry based on helical edge states1) (Mini-review)
We review recent studies of the spin-dependent tunneling transport via Aharonov-Bohm interferometer (ABI) formed by helical edge states. We focus on the experimentally relevant case of relatively high temperature, T, as compared to level spacing, Δ. The tunneling conductance of helical ABI is structureless in ballistic case but shows sharp periodic antiresonances as a function of magnetic flux - with the period hc/2e - in presence of magnetic impurities. The incoming unpolarized electron beam acquires finite polarization after transmission through the helical ABI provided that the edges contain at least one magnetic impurity. The finite polarization appears even in the fully classical regime and is therefore robust to dephasing. There is also a quantum contribution to the polarization, which shows sharp identical resonances as a function of magnetic flux with the same period as conductance. This polarization survives at relatively high temperature. The interferometer can be described in terms of ensemble of  {\cal N} \simeq T/\Delta flux-tunable qubits giving equal contributions to conductance and spin polarization. Hence, with increasing the temperature number of active qubits participating in the charge and spin transport increases. These features of tunneling helical ABI open a wide avenue for applications in the area of quantum computing.