For authors
Submission status

Archive (English)
      Volume 117
      Volume 116
      Volume 115
      Volume 114
      Volume 113
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
VOLUME 115 | ISSUE 8 | PAGE 498
Quantum turbulence and Planckian dissipation
The notion of the Planckian dissipation is extended to the system of the Caroli-de Gennes-Matricon discrete energy levels in the vortex core of superconductors and fermionic superfluids. In this extension, the Planck dissipation takes place when the relaxation time τ is comparable with the quantum Heisenberg time t_H=\hbar/\Delta 
E, where Δ E is the interlevel distance in the vortex core (the minigap). This type of Planck dissipation has two important physical consequences. First, it determines the regime, when the effect of the axial anomaly becomes important. The anomalous spectral flow of the energy levels along the chiral branch of the Caroli-de Gennes-Matricon states becomes important in the super-Planckian region, i.e. when \tau 
<\hbar/\Delta E. Second, the Planck dissipation separates the laminar flow of the superfluid liquid at \tau<\hbar/\Delta E and the vortex turbulence regime at \tau>\hbar/\Delta E.