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We propose a direct derivation of a conformal field theory description of 2D
quantum gravity + matter from the formalism of integrable hierarchies subjected
to Virasoro constraints. The construction is based on a generalization of the
Kontsevich parametrization of the Kadomtsev—Patiashvili {(KP) times achieved
by introducing Miwa parameters into it.

1. Introduction. The Matrix Models 13, besides their applications to mat-
ter+gravity systems *=7, have also shown intriguing relations with integrable
hierarchies subjected to Virasioro constraints 81! as well as with the intersec-
tion theory on the moduli space of curves 71%!3. However, a challenging problem
remains of giving a direct proof of the equivalence between the ‘hierarchical’
formalism and the conformal field theory description of quantum gravity 1416,
Another major task is to find the general solution to the Virasoro constraints on
integrable hierarchies.

In this paper we show that these two problems are solved simultaneously, as
the Virasoro constraints are in fact solved by a certain conformal theory. Our
main tool will be a generalization of the Kontsevich parametrization '? (see also
15’""") of the KP times obtained by introducing into it parameters of the Miwa
transformation '7'® known from the KP hierarchy. It turns out that one has to
allow the Miwa parameters to vary so as to be able to move between different
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(generalised) Kontsevich transformations: ‘we e will Soe tlmt dxﬁu'eat Kontsevic
transformations should be used depending on the operators one considers, which
we call the Kontsevich-Miwa transform.
2. Virasoro action on the KP hierarchy. The KP hierarchy equations
are imposed on the coefficients wn(z, t1, t2, ts,...) of a YDIff operator 22 K of
_the form (with D = 8/dz) '

K=1+3Y w.D™" o (1)

n>1

The wave function and the adjoint wave function are defined by

$(t,2) = Kb yo(t,2) = K*lem€®2)  g(t,2) = Zt,z' (2)
r>1
wher: K* is the formal adjoint of K. The wave functions are related to the tau
function via

RN P s 20 A __.c-f(l,x)r(t+[z_1])
P(t,2) = ¢ R V' (t,2) BT (3)

where it [z = (ty £ 27 ta £ 3272 e 1 3273, ).
The Virasoro action on the tau functlon is implemented by the generators,

L> = 3TI0 3?;:;6:: + L k‘ka_gf; +(a0+(J - %)P)a;:,'
Lo = Dakudy 118104 0
Lico = Tiza(k~p)ti-pat; + 35087 k(—p— k)tat_p_it

+ (e0+ (7 - 3)p)(- P)t—p

which satisfy the Virasoro algebra with central charge —12(J2 —~ J + 1).
3. Miwa-Kontsevich transform. The Miwa reparametrization of the KP
times is accomplished by the substitution

1
t' = ; Z n,-zj" (5)
b

where {z;} is a set of points on the complex plane. By the Kontsevich transform
we understand the dependence, via eq.(5), of ¢, on the z; for fized n;. To recast
the Virasoro constraints L,.>-1r = 0 into the Kontsevich parametrization, note
that plckmg out the mvolved I’s amounts to retaining in the energy-momentum
tensor T(z) = Toezz?? L, only terms with z to negative powers:

T(t) &)

where v is from a neighbourhood of the infinity and the integration contour
encompasses this neighbourhood.

A crucial simplification is achieved by evaluating 7(>®)(v) only at a point from
the above set {z,;} (one has to take care that they lie in-the chosen neighbour-
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@hood). We need to express the Virasoro action on the tau function through the

L

8/0z; derivatives, but the equation relating ¢, and z; does not a.llow.' us tc? sub—
stitute 3/8t, In terms of 3/32;. 1t is only after we evaluate the residues ip (&
that we find the t-derivatives to arrange into the combinations which are just the
desired 3/8z;’s, apart from the term — (J ~-3- -.‘,—1':) Y,>17277"23/8t, which
should thus be set to zero by choosing

(")

In this way we arrive at the action of 7%°(z;) on the tau function in the Kontsevich
parametrization given by the operator

Q? 52 1 0 8
Ta(z)=—"F"—-) —— | =—-Qn;— 8
This operator depends on the collection of the n; with 5 # . In particular,
if one wishes all the f(‘”)(zj) to carry over to the Kontsevich variables along

with 7(®)(z), all the n; have to be fixed to the same value (7). Then, one gets
“symmetric” operators . .

@ 1 (8 o -
1(4)~—'2—§‘ZE(55‘“—) (©)

These satisfy the centreless algebra spanned by the {T},,Z._l} Virasoro generators.
Then, if one starts with the Virasoro-constrained KP hierarchy, i.e., f(m)(z)r =0,
one ends up with the KP Virasoro master equation (cf. ref.?°) T(z).r{z;} = 0.

5. Conformal field theory from Virasoro constraints. Now, intro-
duce a conformal theory of a U(1) current j(z) = ¥,cz jnz~""! and an energy-
momentum tensor T(z) = 3 g Lyz™ "%

[jm; Jn] = km‘sﬂ.l-f-ﬂ,o
[Lm, Ln] = (m—"n)Lmin + 4EL(m® ~ m)6minpo (10)
[Lﬂh Jn] = _njm+n

(We have parametrized the central charge as d + 1). Let ¥ be a primary field
with conformal dimension A and U(1) charge ¢. Then, in the standard setting
of 21, we find that the level-2 vector

) = («L?y + Loz + iz + 771 L1) [9) (11)
is primary provided
. k 1 1 2 g
q q9
=—, f=—-7-=, q=-=-, a=-L_= 12
T Py 7T k2 (12)

with ¢ and A given by,

_d-13+/[25-d)(1-d) A= 1-dF/(25-d)(1-d)
24 ’ - 24 '

2
9
Y (13)
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Factoring out the state (11) leads in the usual manner to the equation v

kO A 1 5 0
2¢% 327 95 25— 2 qaz, q’3z1+

é Y _(;-— —~:\!—;~}} \‘I’( )@1\21) ‘I’n(zn)) =0 (14)
! J

wiere %, are primaries of dimension A; and U(1) charge ¢;. In particular,

| s — 1 {9 3
[ 2q2 822 © 2. (‘ 5;‘) } (¥(z1)...¥(za)) =0 (15)

Weiing she Hilbert space as (matter) ® (current) = M ® C, |¥) = |¢) ® |¥),
we introduce the matter YVirasoro generators I, by,

14,; e lﬂ -+ L'q = lr, T 2 ) Jﬁ ’n]m : (16)
2k’
meZL

They then have central charge d. It turns out that

1= (gt + 1) 19 ' an

and thus we are left with a null vector in the matter Hilbert space M. Now, the .
dimension of |¢) in the matter sector,

1, 5-d¥ /(@ -d)1-d)
§=A-—g =
Aot 16 ’

(18)

1s of course (for the appropriate values of d) that of the ‘21’ operator of the
minimal model with central charge d #4%5,

The above can now be used to solve the Virasoro constraints on the KP
hierarchy by assuming the ansatz 23

r{z;} = hm (¥(z1) ... ¥(z,)) (19)

Then, comparing egs.(14) and (8), one finds

| —_z 3 f . —
k _ 13 d:‘x:\/(ZéS d)(1 d")’ (20)

qz

Q*=-

and d is therefore determined in terms of the parameter Q from (4) (where J =
1) as d =13 - 3Q? - % ~
To see what the matter theory field operators are which can be derived from
the Virasoro constraints, consider the form the o>~ 1-constraints take for the
wave function of the hierarchy, w(t, z;) = e"e("’Jw(t,zk), which should now
become a function of the z;, w{z;}(zx). More precisely, consider the ‘unnormal-
ized’ wave function w{z;}(2:) = r{z;}w{z;}(2:). Then the use of the Kontsevich

208



@;ransform at the Miwa point n; = 1/Q, 7 # k and n = —1, gives”

0{z;}(z) = <H ¥(z;) - E(ZI:)> (21)

ik

where E is a primary field with the U(1) charge ¢Q and dimension QA. Now we
choose in (20) the branch of the square root \/Q? so that Q be positive for d < 1:

1 /25—-d 1-d ~QL FCQm
= = - = - (
©= 2\/ 3 i2\/ 3 2 o (22)

(with the upper/lower signs corresponding to those in (20)). This establishes the
physical meaning of the background charge Q present initially in the Virasoro
constraints. (Note that it has entered explicitly in the Kontsevich transform
through {7).) Now, the dimension of E is equal to IF%Qm, which implies in turn
that its dimension in the matter sector equals

1

?%Q (qQ) = +EE{1—J‘“

i (23)

2 2
where Jp, is the conformal ‘spin’ (dimension) of a bc system. Thus, the wave
function is associated (for, say, the lower signs) with the b-field B of a bc system.

e The adjoint wave function is then similarly related to the corresponding ¢ field

C: for instance, the function r(t - [2; 1]+ [!]) is proportional to the correlation
function?’

<,I;1 W¥(z;) exp (qQ / ) B(zi) exp ( Q ) C(Zz)> -

J#L

qQ [*. '
= ( T] %)z - @) exp (—— / J) B(z4)C(2) (24)
. k Ja
I#k
J#l
Note that this is not the system of free fermions underlying the construction of
general (i.e., not Virasoro-constrained) tau functions. By bosonization one gets
a scalar ¢ w1th the energy-momentum tensor T, ——6<p8<p + 2Qm32<p, thus
establishing the relation with minimal models 212425 (for appropriate values of
the central charge d = 1 — 3Q2).
Further, as to the theory in C, recall that we have [jm,jn] = kmX
X8mino, Jaol¥) = 0, Jo|¥) = ¢|¥) with negative ¢*/k (for d < 1). To

“To obtain the insertion into the correlation function (21) at the point z¢ of the operator we
are@terested in by itself, rather than its fusion with the ‘background’ ¥, we use the Kontsevich
transform at the value of the Miwa parameter ny = —1 instead of 2 — 1. This means that

we are in fact considering @{2,};(2x). Similar remarks apply to other correlation functions
considered below.

*Therefore the whole ‘Borel’ subalgebra of the W (J) algebra 2% which is the symetry
algebra of the Virasoro-constrained KP hierarchy ?7, is represented in terms of the bilocal
operator insertions, read off from {24), placed at points from the fized set {z;} x {z;} C
CP! x CP!,
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see what the current corresponds t o in the KP theory, consider the correlatzolg
funciion wiih an extra insertion of an operator which depends on only j:

oy

[1 e [7 ) (25)

\ sk /

The decoupling equation states that the correlation function (25) coincides, up
to a constani, with ihe tau function r"t) evaliuated at the Miwa point n; =

Q JFE R JF L = Q- (2/Q) n = (2/Q) ~ Q. Here, [Q — ‘2/Q‘\‘ =
Qm; a.busmg the notations, the function we are considering can be written as

5 R S RN
”{25}15 {6 = Ozl + Q07"
o
'T'he balance of dimensions and {1} charges of both the ¥ and E operators
follows 2 particular pattern: we find from (i4) that Ay = A%. Then, the

dirmension in uhe matier secior M 18 equal to

A : q] qu Y
Ao S o~ s AL - L 28
= 2% ¢ 2k (26)

As the coefficient at the term linear in g5/ VRS ALE 10m, this eauatlon will always
be satisfied for the matter operaiors ¢ e movxdpd @i/ '~k = ~ | - Thus the
‘dressing’ prescription inherited from the KP hierarchy says that the coefficients
with which the two scalars ¢ and ¢ enter the exponents coincide {to be precise,
up to the factor of ¢}. Therefore, although the field content is the same as in
ref.*5, the David-Distler-Kawai formalism is not recovered directly from the KP
hierarchy,

The ‘bulk’ dimensions A, rather than being equal to 1, are related to the
gravitational scaling dimensions of fields. Indeed, evaluating the gravitational
scaling dimension of ¢ according to 416,

o EVI-d+246-1-4d (27)

/25 ~-d-+1-d

- -4 — —_ - )
j, =3, 44 VIO -3 (28)
8 24

with the sign on the RHS corresponding to that in (13) and the subsequent
formulae. In particular, choosing the lower signs throughout, we have by = A+j3. 1
More generally, the gravitational scaling dimensions corresponding to (26) equa.l

5j+=—qk = 4A; +;q’ =A; +5 \/_
(Again, this is valid for the ‘+’-gravitational scaling dimensions and the logg:
signs in eqs.(20) etc., i.e., for only one out of four possibilities to choose the
signs.)

5. Concluding remarks. 1. Various aspects of the conversion of Virasoro
constraints into decoupling equations deserve more study from the ‘Liouville’
point of view. The Kontsevich-type matrix integral whose Ward identities co-
incide with our master equation may thus provide a candidate for a discretized
210
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y definition of the Liouville theory.
2. For the matter central charge d from the minimal-models series, how can the
higher null-vector decoupling equations be arrived at starting from the Virasoro-
constrained hierarchies?
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