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The chiral gapless excitations on the boundary of the superfluid 3He-A film
give rise to quantization of the transverse (Hall) conductivity in the absence of
magnetic field.

The edge states of fermions have been recently discussed for a droplet of two-
dimensional electron gas exhibiting the Quantum Hall Effect (QHE) under applied
magnetic field. =3 The fermions on the boundary of the droplet are chiral and
gapless and thus represent the only low-energy fermionic excitations in this system,
since there is a finite emergy gap for fermions within the droplet. The neutral
superfluid He-A film represents the QHE without magnetic field*: the response
of the particle current on the gradient of the chemical potential applied in the
transverse direction (analog of Hall conductivity) exhibits quantization. However as
was shown in Ref.? this quantization rule is only approximate and is valid in the
extreme limit of the small gap as compared with the Fermi energy. Here we show
that in the geometry which leads to the existence of the chiral edge excitations
in the 3He-A film the quantization of the Hall conductivity is exact.
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Profile of the chemical potential applied to the strip of the

3He-A flm in three different geometries: (a) there is no [

vector outside the layer; (b) ? is oriented in the opposite
- direction outside the layer; (c) [ is oriented everywhere in the
» same direction.

s

For the neutral 3He-A film the role of the magnetic field is played by the
spontaneous orbital angular momentum of the Cooper pairs, which violates the
time inversion and 2d space inversion symmetries. The direction of the momentum,
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denoted by unit vector [, is fixed along the mormal to the film: [=+3 We
consider here the QHE in the following geometry (see Figure): the difference of
chemical potentials u(zz)—p(:cl) is applied to the strip z; < z < =2 of the film
with given orientation of [=3 and the mass current J is measured in the direction
y. We consider three different geometries: (1) outside the layer there is no *He-A%
instead for example there is the planar state which has no orbital momentum
(Fig.a) ; (2) the 3He-A film with an opposite orientation of [ =—2 (Fig.b) is
outside the strip; (3) the 3He-A film everywhere has the same orientation of ]
(Fig.3). Our results for the total current in the strip for these cases are:

70 = LI a) o)) M)
T® = N ;) - (1)) - 5oles) — oler)) @)
J® = Z—(p(zz) —-p(z1)) (3)

where p is the particle density per unit area of the film, m3 is the mass of 3He
atom, and N is related to the number of the chiral fermions on the boundary of
the layer, which depends on the film thickness and increases with increase of the
thickness. N is even for the 3He-A film and is any integer for the 3He-A; film.
Since this result does not depend on the details of the system we calculate the
current using the simplest model for the 3He-A film.

In the thin 3He film the dimensional quantization along z becomes important,
and the quasiparticle spectrum in the normal 3He film depends on the _index ¢ of
discrete level of the motion along z and on two-dimensional momentum k= (kz, ky).
For the simplest model of the noninteracting levels g the spectrum of the particles
on each level of a normal film is

- k2 ”
cq(k)=e(0)+ 5 — (4)

where €4(0) ~ h?g?/maa® with a being the thickness of the film. On each level g,
which is below the chemical potential, £,(0) < y, the Fermi-liquid is formed with
its own Fermi-momentum kg,

k2
T =H—e(0) (5)

The Cooper pairing leads to nondiagonal matrix elements between particle and
hole states. The relevant Bogoliubov-Nambu matrix for the fermions on the level
g in the 3He-A film is 2 x 2 matrix, if one discards the spin part of the order
parameter and neglects the interlevel interaction. It is expressed in terms of two
vectors é! and é2 in the (z,y) plane:

H, = (eq(l-c') — w7+ ch- & - cqlz- érn (6)

where 7 are the Pauli matrices in the particle-hole space, and ¢, are the amplitudes
of the nondiagonal elements. In the equilibrium 3He-A film &' 1 &2, | &' |=| &% |=1
and [=¢! x é2. The energy spectrum N

A

5

E2(E) = (eq (k) — n)* + [(E - 64)2 + (k- &)%) 7

is nowhere zero in the equilibrium 3He-A film, like in the two-dimensional electron
gas in the regime of the QHE.
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The szeroes in the spectrum appear at = =z; and at z =23, i.e. at the edges
of the 3He-A strip. We consider first the case (2), when the edges of the layer are
borders between domains with different I orientation. The topological properties of
the spectrum are insemsitive to the details, so we choose the simplest realization®

S é'(z) and &(z):

Bz) =2 , &(z) =-9 tanh(z;le)tanh(zf_:z) : (8)

where {p is the size of the domain boundary, which is of order coherence length,
&g > k;l, we also assume that {p < (23 — ;). Far from the boundaries =g
at <z, and z > 22, and é2 =§ at z; < z < z3, which corresponds to [=—-% at
z<z; and z > z2, and i=% at 2, <z < zs.

Since £ > k;l we may first consider the spectrum in the semiclassical
approximation, in which the spectrum depends both on the momentum and the
coordinate: E,(k,7) in Eq.(7) with é'(z) and é*(z) from Eq.(8). The energy
becomes gero at the lines (z=z; , ks =0 , ky =+kp,) and (z =22 , ks =
0, ky=zkpg) in the 4-dimensional (E,7)- space. These are the straight lines
along the y axis of 4d space. These manifolds of zeroes have the topological
stability. The explicit expression for the topological invariant, which supports the
stability of the zeroes, may be constructed* in terms of the Green’s function
matrix Ggp(w, k, 2):

1
= ey b / dS" G9,G1G9,GIGHG! . ©)

For given value of y the integral is taken over the 3d sphere in 44 space
(w, kz, ky,z) about each szero point of the spectrum, say, (w=0, z=2;, , ko=
0, ky=kpg). This integral is m=1 for zeroes at ¢ =z; and m=—1 for zeroes
at ==z, which can be checked in the model of the noninteracting levels, where
#he Green function matrix is diagonal in level g indices:

1

PRSI (19

Gopl(w, k,2) = bp

The number of zeroes in the semiclassical energy spectrum E,,(I:,i") is thus 4qo for
each domain boundary, where 2go is the number of the Fermi-liquids in normal
state: go is the number of the levels of the quantized motion along z below pu
and we take into account the double degemeracy over spin; for the 3He-A;, where
only one spin component forms the Cooper pairs, there is no factor 2.

The index theorem relates the number of zeroes in the semiclassical spectrum
with the same number 4go of the gapless fermionic modes localized on the boundary
in the exact quantum-mechanical problem. The exact energy spectrum of the
fermions, E,(ky), depends on the momentum k, along the domain boundary. In
the simplest realization of the structure of the domain boundary,’ the Hamiltonian
which defines the spectrum, say, at z =g, and ky ~ kp, is

T—2 r
2
3:}

Each Hamiltonian has zero-mode eigenfunction, the spinor ¥ = (u(z),v(z)):

(11)

.0
H, =vpg(ky — kpg)7a + cq‘rl(—za-) —~ ¢gkpgtanh

» ¥=(0, ch*Z

fa’) ’

Each mode produces the gapless branch of the fermionic spectrum, which crosses
sero value at ky = krg. These are one-dimensional Fermi-liquids.

s=kplp . (12)
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It is important that the symmetry with respect to ky — —ky is broken here:
in the vicinity of the Fermi-points +kp, the spectrum is

EO(?: ky) = sign(ky) (eq(ky) — u) ~ vrg(ky F krg) (li)

which corresponds to the right moving gzero fermionic modes on the doma?n
boundary. Altogether there are 4¢o right moving gapless fermions localized on
the boundary at z =z; and the same amount of the left moving chiral gapless
fermions at z = z,.

Due to this asymmetry there is a net linear momentum and therefore the
ground-state mass current in each of the domain boundaries. The magnitude of
the vacuum current may be obtained using the gradient expansion,® which holds
since {pkp >» 1. The expression for the current in the inhomogeneous order
parameter field may be obtained in terms of the phase of the order parameter’:

ST B e 198 I
=3 Zk Enq(E, ) 52 8(,7) + 3 5 ij Enq(E,7) gp-2(k, ) ]-
L 8 L

1 - a 9 g 9 ~
-y 2.2 2.9 A 14

ng(B) = 5(1 - BBy a5 : (15)

The first term in Eq.(14) has no contribution to the current along y. The

integration of the second term, which is a full derivative, over z from —oo to
400 leads to the regular contribution

- h.
Jregula.r = _zy (p(32) - P(zl))’ (16\”‘

which exists even in the absence of the edge chiral states and is related to the
edge currents produced by the orbital momentum of Cooper pairs L= 1hpl (it is

hl per each two 3He atoms of this p-wave superfluid):
Jregular = i/ de Vx1L, (17)
—oo .

The third term is concentrated in the domain boundaries and gives the
contribution from the chiral edge states. Since

ng(E, ) (5;-5-5-3-.)@@ 7) = sign(ky) 2x[6(z— 1)~ 6(z—23)}6(k:)O(kgr — k)
one obtains for this anomalous contribution to the current ()
Faa(es) + Fualer) =§ 5o D(0e) — o OOu(er) = 4(0)-

- %;(p(cl)~eq(0))9(p(zl)feq(0)) =ﬂ%(#(=z) - u(z1)) (;9)

where N =2¢y (N =gqo for the 3He-A; film).

The anomalous current may be also obtained directly from the exact spectrum
of the chiral mode in the vicinity of the Fermi-point in Eq.(13). The change
ép in the chemical potential leads to flow of the fermionic levels k, through the
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Fermi-points and therefore the linear momentum o éu is created from the vacuum.
The response of the anomalous current §3°,, ky©(—Fo(g, ky)) to éu is thus

dJ. m, m;
. e e SOk O) =Ny (20)
s q
which is the variation of Eq.(19). This effect of the momentum creation is
the manifestation of the same chiral anomaly, which was discussed for the bulk
3He-A 9.

The total current in the geometry of Fig.b is the sum of the regular and
anomalous terms, Eq.(16) + Eq.(19), which leads to Eq.(2). In the geometry of
Fig.a there is no | outside the layer, and the regular contribution from Eq.(17) is
absent. As for the anomalous contribution one should retain only half of it since
the edge of the He-A contains twice less the number of the chiral fermions; this
leads to Eq.(1). In the geometry of Fig.c there are mo edge states at all and ome
has only the regular conmtribution in Eq.(3); this case considered in Ref.* has no
exact quantization, though in the limit of weak interaction between the fermions
the quantity 8p/8u approaches the step-wise behavior. The exact quantization of
the current is related only to the chiral edge states. From Figure and Eqs.(1-3)
it also follows that the current obeys the summation rule, which follows from that
for the Cooper pair orbital momentum: in particular J2) 4 j3) =271,

Note that the response of the current in this analog of QHE is quantized
in terms of the same topological number N as the Chern-Simons term in the
3He-A film which determines the spin and quantum statistics of the particle-like
solitons.©

I am indebted to M. Stone who attracted my attention to the edge effects.
This work has been supported through the ROTA co-operation project between
the Academy of Finland and the USSR Academy of Sciences.

.

.

1. X.G. Wen, Phys. Rev. B 43, 11025 (1991),

2. M. Stone, Annals of Phys. 207, 38 (1991).

3. A. Balatsky, and M. Stone, Phys. Rev. B 43, 8038 (1991).

4. GE. Volovik, ZhETF 94, 123 (1988) [Sov. Phys.: JETP 67, 1804 (1988)] .

5. M. Naknhara, J. Phys. C 19, L195 (1986).

6. D. Pattarini, and D. Waxman, J. Phys. C. 19, L547 (1986),

7. G.E. Volovik and V.P. Mineev, ZhETF 83, 1025 (1982)[Sov. Phys.: JETP, 56, 579 (1982)].
8. G.E. Volovik, Pis'ma ZhETF 43, 428 (1986); [JETP Letters 43, 551 (1986)].

9. M. Stone, and F. Gaitan, Annals of Phys.. 178, 89 (1987).

10. G.E. Volovik, and V.M. Yakovenko, J. Phys.: Cond. Matter 1, 5263 (1989).

“.\

367



