Эволюция спинового порядка холловских ферромагнетиков при сильном смешивании уровней Ландау и $1 \le \nu \le 2$

А. С. Кореев^{+×1)}, П. С. Бережной^{*+}, А. Б. Ваньков^{+*}, И. В. Кукушкин^{+*}

+Институт физики твердого тела РАН, 142432 Черноголовка, Россия

*Национальный исследовательский университет "Высшая школа экономики", 101000 Москва, Россия

[×] Московский физико-технический институт (национальный исследовательский университет), 141701 Долгопрудный, Россия

Поступила в редакцию 25 октября 2023 г. После переработки 19 декабря 2023 г. Принята к публикации 19 декабря 2023 г.

В сильнокореллированных двумерных электронных системах на основе гетероструктур MgZnO/ZnO выявлено необычное поведение спинового упорядочения в квантовом пределе при $1 \le \nu \le 2$. При изменении фактора заполнения и угловой ориентации магнитного поля в спектрах неупругого рассеяния света зарегистрированы характерные преобразования коллективных спиновых возбуждений, свидетельствующие о качественно разных режимах перестройки спиновой конфигурации системы – плавной деполяризации при $1 < \nu < 3/2$ с формированием спиновых текстур и, напротив, резкой ферромагнитной неустойчивости при некотором $3/2 < \nu \le 2$. Также из сравнения с магнитотранспортными экспериментами [J. Falson, D. Maryenko, B. Friess et al., Nature Phys. **11**, 347 (2015)] оказалось, что исчезновение спиновых текстур при изменении угла наклона поля коррелирует с появлением несжимаемого состояния при $\nu = 3/2$.

DOI: 10.31857/S1234567824030078, EDN: spvbtm

В двумерных электронных системах (ДЭС) с сильным взаимодействием даже простейшие квантово-холловские состояния с целочисленными факторами заполнения вскрывают калейдоскоп многочастичных явлений – ферромагнитная неустойчивость стонеровского типа [1, 2], фермижидкостные перенормировки массы и спиновой восприимчивости для электронов проводимости [3-5], коллапс обменной энергии, магнитоэкситоны с необычными свойствами [6]. Тем не менее спиновая конфигурация состояний целочисленного квантового эффекта Холла (КЭХ) коллинеарна и определяется заполнением спиновых уровней Ландау (УЛ) электронами или квазичастицами. При отклонении от ферромагнитных холловских состояний магнитный порядок становится топологически нетривиальным. Известно, что вследствие конкуренции между обменным и зеемановским взаимодействием в ДЭС могут возникнуть спиновые текстуры скирмионного типа [7]. Их существование экспериментально подтверждено, например, в высококачественных ДЭС на основе GaAs как по ускоренной спиновой деполяризации ДЭС [8, 9], так и по возникновению в спектре низкоэнергети-

ческих коллективных возбуждений дополнительной спиновой моды [10, 11], свидетельствующей о нарушении спин-вращательной симметрии в системе. В практически столь же совершенных двумерных системах на основе ZnO и AlAs скирмионные текстуры энергетически невыгодны из-за больших значений зеемановской щели и подавленного масштаба обменной энергии [12]. С другой стороны, из-за усиленных кулоновских корреляций происходит перенормировка спинового и орбитального расщеплений между квазичастичными УЛ, и они могут зависеть от фактора заполнения, сжимаемости состояний, кулоновского смешивания УЛ. При сближении и пересечении разноименных спиновых УЛ может происходить преобразование спинового упорядочения между холловскими ферромагнетиками, условия которого в случае сильновзаимодействующих ДЭС могут сильно искажаться в зависимости от фактора заполнения. В магнитотранспортном исследовании структур на основе MgZnO/ZnO с сильновзаимодействующей ДЭС (параметр $r_s \sim 8$) обнаружена немонотонная зависимость критического угла наклона магнитного поля от фактора заполнения [13]. Она содержит участки как с резким переключением спиновой поляризации (например, при $1.7 < \nu \leq 2$), так и с качественно иным харак-

¹⁾e-mail: koreyev.alexis@yandex.ru

тером, проявляющимся в виде размытых областей на карте сопротивления при $\nu \sim 1.2-1.3$. Позже, в экспериментах по неупругому рассеянию света (НРС) [14] на аналогичных образцах и при тех же условиях $\nu \sim 1.2 \pm 0.15$ были выявлены необычные свойства спектра нижайших спиновых возбуждений с дополнительной низкоэнергетической модой. Это свидетельствует о формировании в системе неколлинеарного спинового порядка, как было ранее показано и на примере спиновых текстур ДЭС в GaAs [10, 11]. Таким образом, преобразование спинового порядка при нецелочисленных *v* может идти по качественно разным сценариям, которые не объясняются только лишь перенормировкой фермижидкостных параметров, но подвержены влиянию остаточных кулоновских корреляций между квазичастицами. В данной работе эволюция спинового порядка в сильновзаимодействующей ДЭС при 1 < ν < 2 изучена в зависимости от ключевых параметров, влияющих на энергетические масштабы и иерархию УЛ - концентрации ДЭС, фактора заполнения, угла наклона магнитного поля. Для этого проведено зондирование спектра и дисперсии нижайших по энергии спиновых возбуждений методом НРС.

Исследования проводились на высококачественных гетероструктурах MgZnO/ZnO, выращенных методом молекулярно-пучковой эпитаксии [5]. Концентрации носителей в ДЭС составляли от 1.14 до 2.85×10^{11} см⁻². Подвижности ДЭС в образцах находились в диапазоне $4-7 \times 10^5 \, \text{см}^2/\text{Bc}$. Исследования проводились методом резонансного НРС с регулируемым импульсом передачи. Для фотовозбуждения полупроводниковой гетероструктуры использовался перестраиваемый по длине волны Ti-Sp лазер с резонансным удвоением частоты и при энергиях фотонов ~ 3.4 эВ в окрестности прямой оптической щели ZnO [15]. Рассеянный свет анализировался спектрометром в сочетании с азотно-охлаждаемой CCDкамерой. Импульс передачи в процессе НРС задавался однозначно угловой конфигурацией подводимых к образцу световодов и находился в диапазоне $1.0-3.0 \times 10^5 \, \text{см}^{-1}$. Для низкотемпературного эксперимента использовался криостат с откачкой паров ${\rm He}^3$ и рабочей температурой ~ 0.35 K. Образцы помещались на вращательный столик с возможностью изменения угла наклона образца в магнитном поле с точностью порядка 0.5°, а максимальное магнитное поле составляло 15 Тл. Спектральные линии НРС узнавались на фоне сигнала фотолюминесценции по признаку их фиксированного энергетического сдвига относительно положения лазера.

Рис. 1. (Цветной онлайн) – (а) Спектры НРС на спиновых экситонах при различных факторах заполнения. Экспериментальные параметры те же, что и для (b). На панелях (b) и (c) – зависимости многочастичных вкладов в энергию SE от фактора заполнения при различных углах наклона магнитного поля. Положение минимума расщепления Δ двух мод отмечено ν^* . Фактор заполнения, соответствующий ферромагнитному переходу, отмечен ν_{FMT} . Иллюстрации спиновых упорядочений различных фаз приведены на диаграммах в терминах заполнения квазичастичных УЛ

В фокусе внимания были спектры НРС на спиновых экситонах (SE) в пределах частично заполненных УЛ. На рисунке 1а показаны характерные спектры SE при ненулевом импульсе k и при трех факторах заполнения с качественно разными типами спинового упорядочения. При $\nu = 1$ коллинеарный холловский ферромагнетик поддерживает единственный ларморовский SE (спектр слева), с энергией выше E_z за счет k-дисперсии. В диапазоне $1.1 \leq \leq \nu \leq 1.3$ в спектре появляется дополнительная низкоэнергетическая спиновая мода с $E < E_Z$ (центральный спектр), что служит индикатором фор-

203

мирования неколлинеарного спинового порядка. На рисунке 1b, с энергии спиновых мод за вычетом одночастичного зеемановского расщепления построены как функции фактора заполнения в диапазоне $1 \le \nu \le 2$. Между спиновыми модами, обозначенными SE_{hi} и SE_{lo} , наблюдается антипересечение. Ранее было показано [14], что расталкивание мод имеет кулоновский характер – растет от переданного импульса и концентрации ДЭС. Такая картина возбуждений имеет односторонний характер при отклонении фактора заполнения от $\nu = 1$, что связано с особенностью заполнения электронами следующих спиновых УЛ. Наконец, при подходе к $\nu = 2$ картина может быть качественно разной - либо наблюдается плавная эволюция SE с $E = E_z$ вплоть до его исчезновения в парамагнитной фазе (рис. 1с); либо при некотором факторе заполнения $\nu = \nu_{FMT}$ резко меняется энергия и интенсивность SE (рис. 1a справа и рис. 1b), сигнализируя о переходе ДЭС в ферромагнитную фазу. Схема заполнения квазичастичных УЛ в обеих фазах показана в правой части рис. 1b, c (уровни 0↑ и 1↓ меняются местами). Инверсия положения уровней 0↑ и 1↓ может быть достигнута как увеличением угла наклона магнитного поля (случай рис. 1b), так и уменьшением концентрации ДЭС (изза перенормировки спиновой восприимчивости).

В случае сильного смешивания УЛ и при факторе заполнения $\nu = 1+$ иерархия спиновых уровней уже оказывается инвертированной [13, 14], и начинает заполняться квазичастичный УЛ 1↓ (рис. 1с слева). Существует область промежуточных факторов заполнения в окрестности $\nu \sim 1.2$, когда спиновые уровни 0↑ и 1↓ почти вырождены, энергетическое расщепление между ними δ можно считать малым по сравнению с обменной энергией Σ , и потому оказываются энергетически выгодными спиновые текстуры (схематично показано на средней диаграмме рис. 1с).

При увеличении наклона магнитного поля картина коллективных возбуждений существенно меняется. Ферромагнитный фазовый переход сдвигается в сторону факторов заполнения $\nu_{FMT} < 2$ при углах, больших некоторого критического ($\Theta_{\nu=2}$). Для одного из образцов зависимость ν_{FMT} от угла наклона приведена круглыми символами на рис. 2а. Однако антипересечение спиновых мод SE_{hi} и SE_{lo} имеет фиксированный центральный фактор заполнения $\nu^* \approx 1.2$ вплоть до значительно больших углов наклона. Начиная с критического угла Θ_{c1} , расщепление мод Δ резко схлопывается (вставка к рис. 3), а начиная с угла $\Theta_{c2} > \Theta_{c1}$, сдвигается и положение центрального фактора заполнения ν^* (квадраты на рис. 2а). Этот результат количественно согласуется

Рис. 2. (Цветной онлайн) (а) – Зависимости факторов заполнения точки антипересечения ν^* (квадратные символы) и ферромагнитного перехода ν_{FMT} (круглые символы) от угла наклона магнитного поля. (b) – Магнитотранспортная карта, взятая из [13] для образца ZnO с $n_s = 2.3 \times 10^{11}$ см⁻². Важно: указанные направления спинов везде инвертированы (в оригинале взят противоположный знак *q*-фактора)

с результатами магнитотранспортных исследований близкого по параметрам образца [13]. Угловая эволюция ν_{FMT} при $\Theta > \Theta_{\nu=2}$ проявляется как резкая граница на фазовой диаграмме (рис. 2b) вблизи 1.7 < ν < 2. Со стороны ν < 3/2 резкой границы нет, а вместо нее в некотором угловом диапазоне наблюдается размытая вертикальная полоса, означающая плавное изменение спиновой поляризации при $\nu \sim 1.2-1.3$. В текущем эксперименте идентифицирован характер такого преобразования – посредством формирования спиновых текстур. Похожая картина получается и для других образцов – на рис. 3 показаны зависимости от концентрации критических углов Θ_{c1} и Θ_{c2} в сравнении с аналогичной зависимостью для критического угла $\Theta_{\nu=2}$.

При углах, больше Θ_{c2} , антипересечение спиновых мод при $\nu < 3/2$ и резкий ферромагнитный переход более неразличимы, хотя при не слишком

Рис. 3. (Цветной онлайн) Зависимость критических углов Θ_{c1} и Θ_{c2} от концентрации ДЭС в сравнении с аналогичной зависимостью для угла ферромагнитного перехода при $\nu = 2$. Цветом выделен угловой диапазон $\Theta_{c1} < \Theta < \Theta_{c2}$. Овалом обозначена область параметров, при которых в [13] было обнаружено несжимаемое состояние ДКЭХ $\nu = 3/2$. На вставке представлена зависимость расщепления спиновых мод (в виде Δ/k) от угла наклона магнитного поля, полученная на одном из образцов. Черные символы: $k = (2.2-2.62) \times 10^5 \,\mathrm{cm}^{-1}$, красные: $k = (1.5-1.96) \times 10^5 \,\mathrm{cm}^{-1}$

Рис. 4. (Цветной онлайн) Эволюция многочастичного вклада в энергию спиновых экситонов от фактора заполнения при углах, превышающих Θ_{c2} . Импульсы и концентрации ДЭС указаны. Пунктирными прямоугольниками очерчены области, где спектральные пики SE уширены, но тонкой структуры не разрешается

больших углах (например, 43° и 45° на рис. 4) остаются две соответствующие точки перегиба в зависимости энергии SE от ν . Если в этих областях и есть тонкая структура линий SE, то она не разрешается, а наблюдается лишь некоторое уширение пиков HPC. В расширяющейся с ростом угла области факторов заполнения $1 \leq \nu \lesssim 1.3$ многочастичный вклад в энергию SE положителен, практически постоянен и соответствует стабильной коллинеарной

ферромагнитной фазе. В диапазоне $1.7 \leq \nu < 2$ энергия SE также имеет стабильный отрицательный кулоновский сдвиг, соответствующий случаю двухкомпонентного холловского ферромагнетика $\nu = 2$ (как в [6]). Два граничных фактора заполнения в этой угловой зависимости (рис. 2а) близки соответственно к $\nu \approx 4/3$ и $\nu \approx 5/3$, что может сигнализировать об особой роли этих состояний дробного КЭХ в преобразовании спинового порядка (есть индикации и на карте магнитосопротивления в [13], рис. 2b). В отличие от стабильного поведения в двух предельных ферромагнитных фазах, SE резко перестраивается в окрестности $\nu \approx 3/2$ – его энергия утрачивает обменно-кулоновский вклад и сравнивается с зеемановской (рис. 4). Отсюда можно заключить, что в окрестности $\nu = 3/2$ при этих углах еще удерживается парамагнитное упорядочение. Наконец, при дальнейшем увеличении угла наклона поля ($\Theta = 52^{\circ}$ и 60° на рис. 4) энергия SE имеет положительный обменный вклад в постепенно расширяющемся диапазоне, накрывающем область $1 < \nu \leq 3/2$, т.е. энергетически выигрывает классический тип холловского ферромагнетика гейзенберговского типа с положительной спиновой жесткостью. Это же проявляется и в сопутствующем уменьшении величины отрицательного дисперсионного сдвига SE в окрестности $\nu=2$ (из сравнения данных для $\Theta=52^\circ$ и 60° при одинаковом импульсе). Измерение кривых при еще больших углах было технически затруднено, но указанный тренд к положительной спиновой жесткости холловского ферромагнетика вполне ожидаем при увеличении угла наклона и отдалении друг от друга спиновых УЛ 0↑ и 1↓.

Описанные симптомы спиновых трансформаций при нецелочисленных ν не укладываются в общепринятую картину пересечения квазичастичных УЛ. Прежде всего, зависимости всех обсуждаемых критических углов наклона поля от фактора заполнения (например, на карте магнитосопротивления с сильно немонотонной границей при $1 < \nu < 2$) связаны с соответствующим немонотонным изменением параметра перенормированной спиновой восприимчивости g^*m^* . Даже для целых $\nu = 1$ и $\nu = 2$ ее значения отличаются, поскольку для всех изученных образцов в пределе малых углов наклона Θ порядок УЛ 0↑ и 1↓ прямой при $\nu = 2$, но инвертированный при $\nu = 1$. Различия возникают в деталях диэлектрической поляризуемости ДЭС в этих состояниях КЭХ, влияющей на характер ферми-жидкостных перенормировок [16]. А в случае частично заполненных УЛ дополнительно включается механизм металлической экранировки кулоновского взаимодействия за счет внутриуровневых флуктуаций плотности, и в результате перенормировка спиновой восприимчивости ферми-жидкости g^*m^* оказывается слабее, чем при целочисленных ν . Это сказывается в необходимости большего наклона магнитного поля для пересечения УЛ при отстройке ν от целых к полуцелым.

Даже с учетом немонотонной зависимости g^*m^* упрощенная модель невзаимодействующих фермижидкостных квазичастиц не описывает систему при нецелочисленных *v*. Роль остаточных корреляций между квазичастицами сказывается в качественно разном характере спиновых трансформаций при совпадении УЛ – в одном случае при $\nu = \nu_{FMT}$ имеет место резкий, лавинообразный спин-флип процесс, а в другом - в окрестности ν^* - плавная трансформация спинового упорядочения через образование текстур. Кроме того, вплоть до критического угла Θ_{c2} существует некий механизм, привязывающий условия образования неколлинеарного спинового порядка к фактору заполнения $\nu^* \approx 1.2$ (рис. 2a), и только после коллапса текстур начинается смещение ν^* в большую сторону. При дальнейшем увеличении угла речь уже не идет о спиновых текстурах, их размер, по-видимому значительно сокращается из-за расхождения энергий УЛ 0↑ и 1↓. Детальные механизмы данных спиновых превращений неясны, поэтому теоретическое описание спиновой конфигурации основного состояния ДЭС хотя бы в терминах взаимодействующих квазичастиц на перенормированных УЛ было бы крайне полезно.

Для одной из измеренных гетероструктур с концентрацией $n = 2.23 \times 10^{11} \,\mathrm{cm}^{-2}$ угловой диапазон коллапсирования спиновых текстур $\Theta_{c1} < \Theta < \Theta_{c2}$ (отмечен эллипсом на рис. 3) совпадает до долей градуса с областью обнаружения несжимаемого состояния КЭХ при $\nu = 3/2$ в магнитотранспортных экспериментах (квантование сопротивления наблюдалось в [13] при $T \sim 20 \,\mathrm{mK}$).

В заключение, в сильновзаимодействующих ДЭС на основе MgZnO/ZnO исследована эволюция спинового порядка при нецелочисленных факторах заполнения $1 \le \nu \le 2$ по поведению низкоэнергетических спиновых возбуждений в спектрах неупругого рассеяния света. Резкий ферромагнитный переход наблюдался при $\nu \gtrsim 1.7$ в зависимости от угла наклона поля и сопровождался скачком энергии спинового экситона. Качественно другое преобразование спинового порядка наблюдалось при $\nu < 3/2$ – в окрестности $1.1 \le \nu \le 1.3$ в спектре возбуждений кроме ларморовского спинового экситона, имеется дополнительная спиновая мода с энергией, ниже зеемановской, что является симптомом нарушения спин- враща-

тельной симметрии в системе (образования спиновых текстур). Эта неколлинеарная спиновая конфигурация в системе существует до некоторого критического угла, зависящего от концентрации ДЭС. Получены зависимости критических углов исчезновения спиновых текстур от концентрации. При бо́льших углах симптомы как спиновых текстур, так и ферромагнитного перехода пропадают, и система переходит в ферромагнитное состояние в широком диапазоне факторов заполнения. оказывается симметричен по фактору с заполнения с центром на факторе $\nu = 3/2$, спиновая жесткость которого равна нулю.

Финансирование работы. Работа выполнена при финансовой поддержке Российского научного фонда (грант #22-12-00257).

Конфликт интересов. Авторы декларируют отсутствие конфликта интересов.

- D. Maryenko, J. Falson, Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Phys. Rev. B 90, 245303 (2014).
- A. B. Van'kov, B. D. Kaysin, and I. V. Kukushkin, Phys. Rev. B 96, 235401 (2017).
- V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 196404 (2002).
- M. S. Hossain, M. K. Ma, K. A. Villegas Rosales, Y. J. Chung, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan, PNAS 117(51), 32244 (2020).
- J. Falson and M. Kawasaki, Rep. Prog. Phys. 81, 056501 (2018).
- А.Б. Ваньков, И.В. Кукушкин, Письма в ЖЭТФ 113(2), 112 (2021).
- S.L. Sondhi, A. Karlhede, S.A. Kivelson, and E.H. Rezayi, Phys. Rev. B 47, 16419 (1993).
- S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R. Tycko, Phys. Rev. Lett. 74, 5112 (1995).
- E. H. Aifer, B. B. Goldberg, and D. A. Broido, Phys. Rev. Lett. 76, 680 (1996).
- Y. Gallais, J. Yan, A. Pinczuk, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. **100**, 086806 (2008)
- I. K. Drozdov, L. V. Kulik, A. S. Zhuravlev, V. E. Kirpichev, I. V. Kukushkin, S. Schmult, and W. Dietsche, Phys. Rev. Lett. **104**, 136804 (2010)
- A.B. Van'kov, B.D. Kaysin, S. Volosheniuk, and I.V. Kukushkin, Phys. Rev. B 100, 041407(R) (2019)
- J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A. Tsukazaki, J. H. Smet, and M. Kawasaki, Nature Phys. 11, 347 (2015).
- A. B. Van'kov, A. S. Koreyev, P. S. Berezhnoy, and I. V. Kukushkin, Phys. Rev. B 106, 245308 (2022).
- A.B. Vankov, B.D. Kaysin, V.E. Kirpichev, V.V. Solovyev, and I.V. Kukushkin, Phys. Rev. B 94, 155204 (2016).
- I. L. Aleiner and L. I. Glazman, Phys. Rev. B 52, 11296 (1995).