Фотоиндуцированная нелинейная динамика сильно коррелированных систем со спиновым кроссовером: автокаталитический спиновый переход

Ю. С. Орлов^{+*1)}, *С. В. Николаев*^{+*}, *Н. Н. Паклин*⁺

+Сибирский федеральный университет, 660041 Красноярск, Россия

* Институт физики им. Л. В. Киренского, Федеральный исследовательский центр "Красноярский научный центр" Сибирского отделения РАН, 660036 Красноярск, Россия

> Поступила в редакцию 7 ноября 2023 г. После переработки 1 декабря 2023 г. Принята к публикации 7 декабря 2023 г.

Рассмотрены нелинейные явления типа реакции Белоусова–Жаботинского (автокаталитические осцилляции заселенности высокоспинового и низкоспинового многоэлектронных состояний иона переходного металла) в открытых системах со спиновым кроссовером вблизи бистабильности. Проанализированы условия, при которых возможно экспериментальное наблюдение автокаталитических осцилляций намагниченности в магнитоупорядоченных системах со спиновым кроссовером.

DOI: 10.31857/S123456782403011X, EDN: sqsmef

1. Системы со спиновым кроссовером (СК) включают обширный класс веществ: металлоорганические комплексы, органические радикалы, неорганические соли, оксиды переходных металлов и в большинстве случаев имеют более полувековую историю изучения, но неустанно привлекают внимание исследователей из разных областей: физики, химии, биологии, медицины. В первую очередь это обусловлено развитием и появлением новых экспериментальных возможностей. Например, создание сверхсильных магнитных полей и сверхвысоких давлений, развитие спектроскопии накачки- зондирования (*pump-probe*) с высоким временным разрешением, наноструктурирование и т.д. В литературе имеются теоретические и экспериментальные исследования нелинейных явлений (в том числе автокаталитических осцилляций типа реакции Белоусова-Жаботинского заселенности многоэлектронных состояний иона переходного металла) в открытых СК системах [1-15]. Большинство подобных исследований касаются слабомагнитных металлоорганических комплексов. Вопрос о формировании пространственно-временных диссипативных структур в магнитоупорядоченных системах (оксидах переходных металлов [16]) вблизи спиновой бистабильности в литературе до сих пор не обсуждался и остается открытым. Основное новшество таких систем состоит в том, что спонтанное (самопроизвольное) формирование в них диссипативных структур не является результатом истинной диффузии вещества (как при наблюдении структур Тьюринга в гидродинамике или биологии), а скорее из-за эффективной диффузии концентраций низкоспиновых (LS) и высокоспиновых (HS) многоэлектронных состояний. В настоящей работе приводятся результаты теоретического моделирования механизмов формирования таких пространственно-временных образований, возникающих в сильно неравновесных условиях. Они соответствуют форме надмолекулярного когерентного поведения огромного числа ионов переходного металла, при которой возможны временные и пространственные осцилляции макроскопической заселенности многоэлектронных термов с разной мультиплетностью и намагниченности.

2. Для определенности рассмотрим случай $S_{HS} = S = 2$ и $S_{LS} = 0$, что соответствует $3d^6$ электронной конфигурации иона переходного металла (например, FeO, $(Mg_{1-x}Fe_x)O)$, и для описания кооперативных явлений (взаимодействий) в СК системах будем использовать эффективный гамильтониан [17, 18]

$$\hat{H} = -\frac{1}{2} J_{\tau} \sum_{\langle i,j \rangle} \hat{\tau_i^z} \cdot \hat{\tau_j^z} + \frac{1}{2} \left(\varepsilon_S - k_B T \ln g \right) \sum_i \hat{\tau_i^z} + \frac{1}{2} J_S \sum_{\langle i,j \rangle} \hat{\boldsymbol{S}}_i \cdot \hat{\boldsymbol{S}}_j.$$
(1)

Здесь первое слагаемое, записанное в представлении псевдоспинового векторного оператора $\hat{\tau}$, описывает межионное упругое взаимодействие, мик-

¹⁾e-mail: jso.krasn@mail.ru

роскопическое происхождение которого обусловлено электрон-фононным взаимодействием. Оператор проекции псевдоспина $\hat{\tau}^z$ принимает два собственных значения $\tau^z = \pm 1$ ("+1" соответствует HS состоянию, "-1" реализуется в случае LS состояния). *J*_{*\tau} – параметр упругого взаимодействия.* Ионные ра-</sub> диусы катионов в LS и HS состояниях отличаются достаточно сильно (разница около 10%), кроме того, электронно-колебательное (вибронное) взаимодействие приводит к зависимости длины связи металл – лиганд от электронного HS/LS состояния [19] (спиновый переход $LS \rightarrow HS$ приводит к увеличению объема координационного комплекса), поэтому более выгодным по энергии является ферромагнитное (FM) псевдоспиновое упорядочение. Второе слагаемое содержит одноионную энергию многоэлектронных состояний в кристаллическом поле. Спиновая щель $\varepsilon_S = E_{HS} - E_{LS}$ определяется как разность энергий термов HS и LS состояний и зависит от величины кристаллического поля $10Dq = \Delta$. В отсутствие всех кооперативных взаимодействий, при $\varepsilon_S <$ < 0 (слабое кристаллическое поле, $\Delta < \Delta_C$) основным является HS-состояние, а при $\varepsilon_S > 0$ (сильное кристаллическое поле, $\Delta > \Delta_C$) реализуется основное LS состояние. В точке кроссовера $\varepsilon_S = \varepsilon_C = 0$. Критическое значение Δ_C определяется внутриионным хундовским взаимодействием. $g = g_{HS}/g_{LS}$ – отношение кратностей вырождения HS (g_{HS}) и LS (*q*_{LS}) состояний. Поскольку оператор проекции псевдоспина по определению принимает только два собственных значения, для учета разной кратности вырождения HS и LS состояний второе слагаемое в (1) содержит вклад, зависящий от температуры. Третье слагаемое описывает межатомное обменное взаимодействие. *J_S* – параметр обменного взаимодействия.

3. Болышинство оксидов переходных металлов при нормальном давлении проявляют антиферромагнитное (AFM) спиновое упорядочение, поэтому в приближении среднего поля (MF) гамильтониан (1) принимает вид (FM – для псевдоспина, AFM для спина)

$$\hat{H}_{MF} = D_{\tau} \sum_{i} \hat{\tau}_{i}^{z} + D_{S} \sum_{i} \hat{S}_{i}^{z} + H_{0}.$$
 (2)

В (2) мы использовали обозначения $D_{\tau} = \Delta_{\text{eff}} - z J_{\tau} \tau$, $D_S = z J_S m$, $H_0 = \frac{1}{2} z J_{\tau} N \tau^2 + \frac{1}{2} z J_S N m^2$, где $m = \langle \hat{S}^z \rangle$ – намагниченность подрешетки (здесь и ниже угловые скобки $\langle ... \rangle$ обозначают термодинамическое среднее), $\tau = \langle \hat{\tau}^z \rangle$, $\Delta_{\text{eff}} = \frac{1}{2} (\varepsilon_S - k_B T \ln g)$, z – число ближайших соседей. Решая задачу на собственные значения

$$\hat{H}_{MF} \left| \psi_k \right\rangle = E_k \left| \psi_k \right\rangle, \tag{3}$$

где $|\psi_k\rangle = C_{LS} |LS\rangle + C_{HS} |HS\rangle$ – собственные состояния гамильтониана \hat{H}_{MF} , и используя решения, отвечающие минимуму свободной энергии F = $= -k_BT \ln Z$, где

$$Z = e^{-\beta H_0} \left(e^{\beta D_\tau} + e^{-\beta D_\tau} \frac{sh\left[\left(S + \frac{1}{2}\right)\beta D_S\right]}{sh\left(\beta D_S/2\right)} \right) \quad (4)$$

– статистическая сумма ($\beta = 1/k_B T$), можно вычислить термодинамические средние, входящие в \hat{H}_{MF} :

$$m = \frac{1}{Z} \sum_{k} \left\langle \psi_{k} \left| \hat{S}^{z} \right| \psi_{k} \right\rangle e^{-E_{k}\beta},$$
$$\tau = \frac{1}{Z} \sum_{k} \left\langle \psi_{k} \left| \hat{\tau}^{z} \right| \psi_{k} \right\rangle e^{-E_{k}\beta}.$$

Тем самым при решении (3) мы имеем дело с самосогласованной задачей нахождения собственных состояний и собственных значений эффективного гамильтониана в приближении среднего поля.

На рисунке 1 представлены рассчитанные фазовые диаграммы заселенности HS состояния n_{HS} = $=\frac{\tau+1}{2}$ (слева) и намагниченности *m* (справа) в координатах температура T – спиновая щель ε_S . Здесь и ниже температура приведена в единицах температуры Нееля $T_N = z J_S \frac{S(S+1)}{3}$, а спиновая щель – в единицах обменного интеграла J_S. Видно, что изза наличия кооперативного взаимодействия J_S в системе сохраняется основное HS состояние вплоть до $\varepsilon_S = \varepsilon_S^C \approx 5 J_S,$ несмотря на то, что в однои
онной картине при $\varepsilon_S > 0$ основным является LS состояние. Увеличение критического ε_S^C за счет кооперативных эффектов вполне понятно, так как обменное взаимодействие J_S стабилизирует HS состояние, понижая его энергию. При $\varepsilon_S > \varepsilon_S^C$ основное AFM (HS) состояние сменяется диамагнитным LS состоянием, DM (LS) (рис. 1b). Упругое взаимодействие J_{τ} в отличие от обменного J_S не приводит к увеличению ε_S^C , но так же, как и J_S , трансформирует плавный спиновый кроссовер в фазовый переход 1-го рода при низких температурах.

На диаграммах (рис. 1) видно существование особой точки: трикритической точки (ε_S^* , T^*), в которой линия фазового перехода 2-го рода непрерывно переходит в линию фазового перехода 1-го рода. На рисунке 1 черными сплошными линиями показана область метастабильных состояний. На вставках рис. 1 показаны сечения вдоль красной штриховой линии. 4. Рассмотрим теперь СК-систему в тепловом контакте с термостатом с температурой T_R и в поле внешнего излучения интенсивности I_0 , приводящего к фототермическому разогреву системы. Изменение ее температуры T во времени t можно задать уравнением

$$\frac{\partial T}{\partial t} = -\alpha \left(T - T_R \right) + I \left(1 + \left(\rho_0 - 1 \right) \frac{\tau + 1}{2} \right) - \frac{\Delta H_\tau}{C_p} \frac{\partial \tau}{\partial t} - \frac{\Delta H_S}{C_p} \frac{\partial m}{\partial t}.$$
(5)

Здесь первое слагаемое в правой части описывает связь с термостатом (α – коэффициент связи). Второе слагаемое обусловлено поглощением внешнего излучения. $I = I_0 \frac{a_{LS}M}{C_p m_a}$, где C_p – молярная теплоемкость, M – молярная масса, m_a – масса образца, $a_{HS(LS)}$ – коэффициенты поглощения в HS(LS) состоянии, $\rho_0 = a_{HS}/a_{LS}$. Два последних слагаемых определяют изменение температуры при изменении энтальпии (спиновой ΔH_S и орбитальной ΔH_{τ}) в результате спинового перехода. $\Delta H = \Delta H_{\tau} + \Delta H_S = T_{eq}\Delta S$, где $T_{eq} = \frac{\varepsilon_S}{k_B \ln g}$ (температура, при которой $n_{HS} = n_{LS}$), $\Delta S = R \ln g$ – изменение энтропии (R – молярная газовая постоянная).

В неравновесном состоянии изменение намагниченности m и термодинамического среднего τ можно описать с помощью релаксационного уравнения

$$\frac{\partial\xi}{\partial t} = -\Gamma_{\xi} \frac{\partial F}{\partial\xi},\tag{6}$$

где $\xi = m, \tau$. Или с учетом (4)

$$\frac{\partial m}{\partial t} = -z\Gamma_S J_S \left(m + e^{-\beta D_\tau} SB_S \left(\beta SD_S\right) \times \frac{sh\left[\left(S + \frac{1}{2}\right)\beta D_S\right]}{e^{\beta D_\tau} sh \left(\beta D_S/2\right) + e^{-\beta D_\tau} sh\left[\left(S + \frac{1}{2}\right)\beta D_S\right]} \right), \quad (7)$$

$$\frac{\partial \tau}{\partial t} = -z\Gamma_{\tau}J_{\tau}\left(\tau + \left(8\right) + \frac{e^{\beta D_{\tau}}sh\left(\beta D_{S}/2\right) - e^{-\beta D_{\tau}}sh\left[\left(S + \frac{1}{2}\right)\beta D_{S}\right]}{e^{\beta D_{\tau}}sh\left(\beta D_{S}/2\right) + e^{-\beta D_{\tau}}sh\left[\left(S + \frac{1}{2}\right)\beta D_{S}\right]}\right),$$
(8)

где

$$B_{S}(\beta SD_{S}) = \frac{(2S+1)}{2S} cth\left[\frac{(2S+1)}{2S}\beta SD_{S}\right] - \frac{1}{2S} cth\left(\frac{1}{2S}\beta SD_{S}\right)$$

– функция Бриллюэна.

Уравнения (5), (7) и (8) для термодинамических средних величин являются макроскопическими.

Фактически при их выводе пренебрегается всеми возникающими временными корреляторами. Такое рассмотрение правомерно, если установление термодинамического равновесия существенно быстрее характерных времен изменения параметров m, n_{HS} и T. Bпротивном случае необходимо рассматривать непосредственно динамику квантовых состояний. Как мы увидим ниже, характерный период автокаталитических осцилляций Т_А находится по порядку величины от десятых до единиц секунды (в зависимости от используемых параметров и начальных условий), что гораздо больше характерных времен спинрешеточной релаксации, спин-орбитального или обменного взаимодействия, магнитной прецессии и любых других процессов изменения намагниченности в среде, происходящих на пикосекундных временах [21–23]. В то же время, характерное время релаксации $HS \rightleftharpoons LS$ в системах со спиновым кроссовером сильно зависит от рассматриваемого соединения, но в большинстве случаев речь идет о наносекундных временах, а время фототермического разогрева соответствует микросекундному масштабу [24].

На рисунке 2 приведен результат решения системы (5), (7), (8) при $T_R = 35 \text{ K}, \varepsilon_S = 17.5 J_S$ (показано красной штриховой линией на рис. 1), $I = 800 \,\mathrm{K} \cdot \mathrm{c}^{-1}$ и набора параметров, взятых из работы [1], где приводится их анализ и оценка из экспериментальных данных: $\Gamma_S = 5 \cdot 10^{-2} \,\mathrm{K}^{-1} \cdot \mathrm{c}^{-1}, \, \Gamma_\tau = 5 \cdot 10^{-1} \,\mathrm{K}^{-1} \cdot \mathrm{c}^{-1},$ $\alpha = 7 \,\mathrm{c}^{-1}, \, a_{LS} = 0.4, \, a_{HS} = 0.3, \, \Delta H_S / C_P = 636 \,\mathrm{K},$ $\Delta H_{\tau}/C_P = 320 \,\mathrm{K}$. Видно, что в открытой неравновесной системе устанавливается стационарный режим автокаталитических колебаний намагниченности *m*, заселенности многоэлектронного HS состояния n_{HS} и температуры T образца (рис. 2). Из всех трех характеристик намагниченность является наименее инертной и практически мгновенно откликается на изменения заселенности и температуры. В промежутке времени от t_1 до t_2 (рис. 2a) m уменьшается, при этом n_{HS} практически не меняется, т.е. происходит перераспределение заселенности между HS-подуровнями с разной проекцией спина вследствие изменения температуры. В интервале от t_2 до t₃ n_{HS} наряду с T резко уменьшается, но остается выше порога протекания, поэтому намагниченность растет. Рост намагниченности продолжается и в интервале от t_3 до $t_1 + T_A$, несмотря на то, что температура в этом интервале существенно не меняется, но *n_{HS}* увеличивается. Таким образом, есть два механизма изменения намагниченности – 1) перераспределение между HS состояниями с разной проекцией и 2) изменение соотношения между HS и LS состояниями.

Рис. 1. (Цветной онлайн) Рассчитанные фазовые диаграммы заселенности HS состояния n_{HS} (a) и намагниченности m (b). На вставках показаны температурные зависимости n_{HS} (a) и m (b) при $\varepsilon_S = 17.5J_S$, отмеченной красной штриховой линией. Расчеты были выполнены при z = 4; $J_S = 28$ K [20] и g = 1100, $J_{\tau} = 38$ K [1]. В точке ($T = T_0 = 0.48T_N$, $\varepsilon_S = 17.5J_S$), отмеченной квадратом и используемой ниже в качестве начальной, $n_{HS} = n_{HS,0} = 0.99$ (a), $m = m_0 = 1.8$ (b)

Физический механизм возникновения осцилляций заселенности спиновых состояний (термов с различной мультиплетностью), намагниченности и температуры можно понять из следующих соображений. В промежутке времени от t_1 до t_2 заселенность n_{HS} (рис. 2b) близка единице и практически не меняется со временем. Поскольку $a_{HS} < a_{LS}$, в этот промежуток времени система меньшего всего получает энергии от внешнего излучения. Из-за связи с резервуаром ($T_R = 35 \,\mathrm{K} \approx 0.16 T_N$) в промежутке времени от t₂ до t₃ температура, а вместе с ней и заселенность резко уменьшаются (рис. 2b, c). Понижение температуры ниже равновесной $T_0 = 0.48T_N$ (отмеченной квадратом на рис. 1 и заданной в качестве начальной для решения системы уравнений (5), (7) и (8)) приводит к росту намагниченности (несмотря на уменьшение, n_{HS} остается выше порога протекания). В промежутке времени от t_3 до $t_1 + T_A$ температура практически не меняется и остается ниже равновесной T_0 (рис. 2с), что приводит к росту намагниченности (рис. 2а). В свою очередь рост намагниченности за счет кооперативного обменного взаимодействия J_S "тянет за собой" заселенность n_{HS} (рис. 2b), стремясь вернуть ее в равновесное значение $n_{HS,0} = 0.99$ (начальное значение, отмеченное квадратом на рис. 1), близкое к единице. Уменьшение n_{HS} (увеличение $n_{LS} = 1 - n_{HS}$) приводит к увеличению поглощения внешнего излучения и, как следствие, температуры после момента времени t₃. В свою очередь рост температуры приводит к уменьшению намагниченности после момента времени t₁. Далее процесс повторяется.

Автокаталитические осцилляции возможны вблизи бистабильности, когда по обе стороны фазового перехода 1-го рода существует граница области перегретых и переохлажденных метастабильных состояний. В нашем случае они имеет место при $\varepsilon_S^{C_2} < \varepsilon_S < \varepsilon_S^*$ (рис. 1). При $\varepsilon_S^{C_1} < \varepsilon_S < \varepsilon_S^{C_2}$ (рис. 1) есть только одна (верхняя по температуре) граница, поэтому автокаталитические осцилляции в этом случае становятся невозможны.

Кроме решений, показанных на рис. 2, существует другой тип решений с уменьшением намагниченности до нуля, но с сохранением автокаталитических осцилляций n_{HS} и T (рис. 3). Отличия обусловлены выбором других начальных условий: $m_0 = 1.5$, $n_{HS,0} = 0.5, T_0 = 0.36T_N$ и параметров: $a_{HS} = 0.13,$ $\Delta H_S/C_P = 97 \,\mathrm{K}, \, \Delta H_\tau/C_P = 5 \,\mathrm{K}$ (значения $a_{LS}, \, \Gamma_S, \,$ Γ_{τ} и α остались прежними). На рисунке 3 видно, что незатухающие осцилляции n_{HS} могут сосуществовать с затухающими колебаниями m, что связано с двумя возможными механизмами изменения намагниченности, описанными выше. Результаты расчета показывают, что наличие осцилляций n_{HS} , которые исследовались без учета магнитной подсистемы при аналогичных параметрах в работе [1], еще не означает наличия соответствующих автокаталитических осцилляций намагниченности, что следует учитывать при постановке эксперимента.

На рисунке 4 представлена траектория движения системы в фазовом пространстве m, n_{HS} и T для случаев, показанных на рис. 2 (4a) и 3 (4b). Видно, что для первого типа решений (рис. 2) траектория выходит на предельный цикл (рис. 4a), а для второго

Рис. 2. (Цветной онлайн) Временная зависимость намагниченности m (a), заселенности многоэлектронного HS состояния n_{HS} (b) и температуры T образца (c), полученная в результате численного решения системы уравнений (5), (7), (8) с начальными условиями $m_0 = 1.8, n_{HS,0} = 0.99$ и $T_0 = 0.48T_N$, соответствующими термодинамически равновесному состоянию, отмеченному квадратом на рис. 1. Вертикальные штриховые линии проведены для удобства сравнения и соответствуют моментам времени t_1, t_2 и t_3

(рис. 3) предельный цикл лежит в плоскости m = 0 (рис. 4b).

5. Таким образов, для формирования автокаталитических осцилляций необходимо наличие нелинейности (что обеспечивается бистабильностью) и положительной обратной связи - три последних слагаемых в правой части уравнения (5). Важно отметить, что в автокаталитических реакциях типа Белоусова-Жаботинского в самой системе имеются нелинейные механизмы, обеспечивающие периодический переход из одного состояния в другое. В данной работе нелинейные уравнения имеют совсем другой вид. Именно наличие обратной связи приводит к нестабильности и возникающим осцилляциям, которые, однако, не возникнут без внешнего излучения, осуществляющего термический разогрев и обеспечивающего именно ненулевую скорость изменения *m* и *n_{HS}*. В нашем случае процесс можно назвать автокаталитическим,

Рис. 3. (Цветной онлайн) Временная зависимость намагниченности m (a), заселенности многоэлектронного HS состояния n_{HS} (b) и температуры T образца (c), полученная в результате численного решения системы уравнений (5), (7), (8) с начальными условиями $m_0 = 1.5, n_{HS,0} = 0.5$ и $T_0 = 0.36T_N$. На вставках показаны зависимости в увеличенном масштабе

если понимать его, как самоускоряющийся или самоподдерживающийся.

Из-за сильной взаимосвязи электронных, магнитных и структурных степеней свободы, явление спинового кроссовера сопряжено с довольно сильным изменением объема V кристаллической решетки. Наряду с регулярной составляющей коэффициента теплового расширения, обусловленной ангарманизмом колебаний решетки, существует аномальный вклад, возникающий из-за вибронного взаимодействия [19]. Поэтому в более общем случае уравнения (5), (7), (8) следует дополнить уравнением движения для V. Учет изменения объема может несколько повлиять на процесс формирования осцилляций намагниченности в магнитоупорядоченных системах со спиновым кроссовером в силу эффекта магнитострикции и сделать его физическое содержание богаче. Используя уравнение Берча-Мурнагана, можно напрямую связать изменение V с заселенностью n_{HS} [25]. Но в силу малости магнитострикции в рассматриваемых

Рис. 4. (Цветной онлайн) Траектория движения системы в фазовом пространстве m, n_{HS} и T для случаев, показанных на рис. 2а и 3b

веществах учет изменения объема существенно не изменит полученных результатов.

6. Финансировании работы. Исследование выполнено за счет средств гранта Российского научного фонда # 22-22-20007, Красноярского краевого фонда науки "Нелинейная динамика и фотоиндуцированные динамические фазовые переходы в сильно коррелированных системах со спиновым кроссовером".

7. Конфликт интересов. Конфликт интересов отсутствует.

- K. Boukheddaden, M. Paez-Espejo, F. Varret, and M. Sy, Phys. Rev. B 89, 224303 (2014).
- F. Varret, M. Paez-Espejo, and K. Boukheddaden, Europhysics Letters 104, 27003 (2013).
- A. Slimani, F. Varret, K. Boukheddaden, D. Garrot, H. Oubouchou, and S. Kaizaki, Phys. Rev. Lett. 110, 087208 (2013).
- M. Sy, F. Varret, K. Boukheddaden, G. Bouchez, J. Marrot, S. Kawata, and S. Kaizaki, Angewandte Chemie International Edition 53(29), 7539 (2014).

- M. Paez-Espejo, M. Sy, F. Varret, and K. Boukheddaden, Phys. Rev. B 89, 024306 (2014).
- M. Sy, D. Garrot, A. Slimani, M. Paez-Espejo, F. Varret, and K. Boukheddaden, Angewandte Chemie International Edition 55(5), 1755 (2016).
- T. Nishihara, A. Bousseksou, and K. Tanaka, Opt. Express 21, 31179 (2013).
- K. Boukheddaden, M. Sy, and F. Varret, Advanced Theory and Simulations 1(9), 1800080 (2018).
- M. Sy and K. Boukheddaden, The Journal of Physical Chemistry C 124(51), 28093 (2020).
- Y. Singh, K. Affes, N.-I. Belmouri, and K. Boukheddaden, Materials Today Physics 27, 100842 (2022).
- M. Ndiaye, Y. Singh, H. Fourati, M. Sy, B. Lo, and K. Boukheddaden, J. Appl. Phys. **129**, 153901 (2021).
- H. Fourati, M. Ndiaye, M. Sy, S. Triki, G. Chastanet, S. Pillet, and K. Boukheddaden, Phys. Rev. B 105, 174436 (2022).
- K. Boukheddaden, H. Fourati, Y. Singh, and G. Chastanet, Magnetochemistry 5(2), 21 (2019).
- M. Sy, R. Traiche, H. Fourati, Y. Singh, F. Varret, and K. Boukheddaden, J. Phys. Chem. C **122**(36), 20952 (2018).
- H. Fourati, G. Bouchez, M. Paez-Espejo, S. Triki, and K. Boukheddaden, Crystals 9(1), 46 (2019).
- I. S. Lyubutin and A. G. Gavriliuk, Phys.-Uspekhi 52, 989 (2009).
- K. Boukheddaden, I. Shteto, B. Hoo, and F. Varret, Phys. Rev. B 62, 14796 (2000).
- J. Nasu, T. Watanabe, M. Naka, and S. Ishihara, Rev. B 93, 205136 (2016).
- Y.S. Orlov, V.A. Dudnikov, A.E. Sokolov, T.M. Ovchinnikova, N.P. Shestakov, and S.G. Ovchinnikov, JETP Lett. **115**, 615 (2022).
- M. J. R. Hoch, S. Nellutla, J. van Tol, E. S. Choi, J. Lu, H. Zheng, and J. F. Mitchell, Phys. Rev. B 79, 214421 (2009).
- A. Kirilyuk, A.V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010).
- A. M. Kalashnikova, A. V. Kimel, and R. V. Pisarev, Phys. Usp. 58, 969 (2015).
- A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature 435, 655 (2005).
- E. Collet and P. Guionneau, Comptes Rendus Chimie 21(12), 1133 (2018).
- Y.S. Orlov, S.V. Nikolaev, A.I. Nesterov, and S.G. Ovchinnikov, JETP Lett. 105, 771 (2017).