О двукратном преобразовании Мутара стационарного уравнения Шредингера с осевой симметрией

 $A. \Gamma. Кудрявцев^{1)}$

Институт прикладной механики РАН, 125040 Москва, Россия —

Поступила в редакцию 2 февраля 2024 г. После переработки 2 февраля 2024 г. Принята к публикации 28 февраля 2024 г.

Рассмотрено обобщенное преобразование Мутара стационарного осесимметричного уравнения Шредингера. Показано, что суперпозиция двух преобразований Мутара может привести к новым потенциалам для проблемы собственных значений. Примеры двумерных потенциалов и точных решений для стационарного осесимметричного уравнения Шредингера получены применением двукратного преобразования Мутара.

DOI: 10.31857/S1234567824070103, EDN: EUFBYY

Введение. Стационарное уравнение Шредингера $(\Delta - u(x,y,z))\,Y\,(x,y,z) = 0$, где Δ – оператор Лапласа, представляет большой интерес, поскольку описывает различные физические явления. В случае $u=-E+v\,(x,y,z)$ это уравнение описывает нерелятивистскую квантовую систему с энергией E [1], в случае $u=-\omega^2/c\,(x,y,z)^2$ уравнение описывает акустическую волну с частотой ω в неоднородной среде со скоростью звука c [2]. Многие физические среды обладают осевой симметрией. В случае осевой симметрии стационарное уравнение Шредингера в сферических координатах имеет вид

$$\left(\frac{\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)}{r^2} + \frac{\frac{\partial}{\partial \theta}\left(\sin\left(\theta\right)\frac{\partial}{\partial \theta}\right)}{r^2\sin\left(\theta\right)} - u\left(r,\theta\right)\right)Y\left(r,\theta\right) = 0.$$
(1)

Важность существования точно решаемых задач квантовой механики бесспорна. Под точно решаемой моделью понимается модель, позволяющая получать точные решения в явном виде. Такие модели важны не только для описания физических систем, но и служат надежным начальным приближением при построении теории возмущений, а также полезны для тестирования численных алгоритмов. Поэтому поиск новых точных решений уравнения Шредингера является актуальной темой научных исследований, при этом используются различные методы решения [3–9].

Полезным инструментом для исследования одномерного уравнения Шредингера является преобразование Дарбу [10]. Преобразование Мутара [11, 12] является обобщением преобразования Дарбу для плоского двумерного уравнения Шредингера. В статьях

[13, 14] было рассмотрено нелокальное преобразование Дарбу двумерного стационарного уравнение Шредингера в декартовых координатах и была установлена его связь с преобразованием Мутара. В статье [15] рассмотрено нелокальное преобразование Дарбу стационарного осесимметричного уравнение Шредингера и показано, что частный случай нелокального преобразования Дарбу является обобщением преобразования Мутара. В настоящей статье рассмотрена задача на собственные значения для аксиально-симметричного уравнения Шредингера и получены новые двумерные потенциалы и точные решения в качестве применения обобщенного преобразования Мутара.

2. Обобщенное преобразование Мутара в сферических координатах. В результате перехода от цилиндрических к сферическим координатам формулы обобщенного преобразования Мутара из работы [15] принимают вид

$$\frac{\partial}{\partial \theta} \left(\tilde{Y}(r,\theta) Y_0(r,\theta) \sin(\theta) \right) =
= \sin(\theta) r \left(Y_0(r,\theta) \right)^2 \frac{\partial}{\partial r} \left(\frac{Y(r,\theta)}{Y_0(r,\theta)} \right),$$
(2)

$$\frac{\partial}{\partial r} \left(\tilde{Y} \left(r, \theta \right) Y_0 \left(r, \theta \right) \sin \left(\theta \right) r \right) =$$

$$- \sin \left(\theta \right) \left(Y_0 \left(r, \theta \right) \right)^2 \frac{\partial}{\partial \theta} \left(\frac{Y \left(r, \theta \right)}{Y_0 \left(r, \theta \right)} \right), \tag{3}$$

$$\tilde{u}(r,\theta) = u(r,\theta) -$$

$$-\left(\frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}}{\partial \theta^{2}}\right)\ln\left(\sin\left(\theta\right)\left(Y_{0}\left(r,\theta\right)\right)^{2}\right).$$

$$(4)$$

 $^{^{1)}}$ e-mail: kudryavtsev_a_g@mail.ru

Здесь Y_0 и Y — решения уравнения (1) с начальным потенциалом u. Функция \tilde{Y} , определяемая как решение совместной системы уравнений (2) и (3), является решением уравнения (1) с новым потенциалом \tilde{u} .

Заметим, что $Y=Y_0, \tilde{Y}=\frac{1}{Y_0\sin(\theta)r}$ является простым примером решения уравнений (2) и (3).

В статьях [15, 16] были получены примеры двумерных потенциалов и точных решений стационарного осесимметричное уравнения Шредингера на основе формул обобщенного преобразования Мутара. Эти примеры показывают, что повторное применение обобщенного преобразования Мутара может привести к более интересным для физической интерпретации потенциалам, чем потенциалы, полученные однократным преобразованием. В частности, повторное применение обобщенного преобразования Мутара эффективно для получения потенциалов, не имеющих особенностей. Для двумерного плоского уравнения Шредингера в декартовых координатах в статье [17] было показано, что двукратное применение классического преобразование Мутара эффективно для получения несингулярных потенциалов. Аналогично, несингулярные потенциалы в цилиндрических координатах могут быть получены с помощью двукратного обобщенного преобразования Мутара [15, 16].

При изучении преобразований Мутара уравнения Шредингера с осевой симметрией было обнаружено еще одно интересное свойство двукратных преобразований [15], а именно, возможность получить одинаковое преобразование для собственных функций с разными собственными значениями. Дело в том, что для задачи на собственные значения $u = -k^2 + v(r, \theta)$ в случае однократного применения преобразования Мутара (4), используя выбранную собственную функцию $Y_0(r, \theta, k)$, соответствующую собственному значению k, новый потенциал имеет вид $\tilde{u}=-k^2+\tilde{v}\left(r,\theta,k\right)$. Поскольку \tilde{v} содержит зависимость от k, получаются разные преобразования для собственных функций с разными собственными значениями. Аналогично классическое преобразование Мутара в двумерном плоском случае приводит к различным преобразованиям для собственных функций с разными собственными значениями. В отличие от преобразования Мутара, преобразование Дарбу дает нам преобразования всех собственных функций. Это различие между двумерным случаем и одномерным случаем, по-видимому, отражается в известном факте о интегрируемости в двумерном случае только на выбранном уровне энергии (см., например, [18, 19]).

Рассмотрим $u = -k^2$ и выберем собственную функцию $Y_0 = \sin{(kr\cos{(\theta)})}$. Из (4) получаем

$$\tilde{u} = -k^2 + 2\frac{k^2}{(\sin(kr\cos(\theta)))^2} + \frac{1}{r^2(\sin(\theta))^2}.$$
 (5)

Это пример зависимости \tilde{v} от k. Чтобы избежать этой зависимости, мы используем двукратное преобразование Мутара. В результате перехода от цилиндрических к сферическим координатам формулы для суперпозиции двух обобщенных преобразований Мутара из работы [15] имеют вид

$$\tilde{u} = u(r,\theta) - \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \ln(F(r,\theta)), \quad (6)$$

$$\frac{\partial F}{\partial \theta} = \sin(\theta) r^2 \left(\frac{\partial Y_2}{\partial r} Y_1 - \frac{\partial Y_1}{\partial r} Y_2 \right), \tag{7}$$

$$\frac{\partial F}{\partial r} = -\sin\left(\theta\right) \left(\frac{\partial Y_2}{\partial \theta} Y_1 - \frac{\partial Y_1}{\partial \theta} Y_2\right). \tag{8}$$

Здесь Y_1 и Y_2 — решения уравнения (1) с начальным потенциалом u.

Уравнения (7), (8) инвариантны относительно замены $Y_1 \to Y_2, Y_2 \to Y_1, F \to -F$, что отражает коммутативность обобщенных преобразований Мутара. Результат не зависит от порядка выбор функций Y_1, Y_2 для преобразования. Отметим также, что F определяется с точностью до умножения на константу. Простые примеры решений уравнения (1) с потенциалом (6) можно получить по формулам $\tilde{Y}_1 = Y_1 F^{-1}, \, \tilde{Y}_2 = Y_2 F^{-1}.$

3. Примеры потенциалов и точных решений. Рассмотрим $u=-k^2$, $Y_1=\sin(kr\cos(\theta))$, $Y_2=\cos(kr\cos(\theta))$. Из уравнений (7), (8) получаем $F=r^2\left(\sin(\theta)\right)^2+C$, где C – произвольная константа. Из формулы (6) получаем новый потенциал

$$\tilde{\tilde{u}} = -k^2 + 4 \frac{r^2 (\sin(\theta))^2 - C}{\left(r^2 (\sin(\theta))^2 + C\right)^2}.$$
 (9)

Здесь \tilde{v} не зависит от k, и мы получили новую задачу на собственные значения. В качестве решения исходной задачи на собственные значения с $u=-k^2$ мы будем рассматривать плоскую волну $\mathrm{e}^{ikr\cos(\theta)}$. Проведя двукратное преобразование Мутара или воспользовавшись простой формулой $Y_2F^{-1}+iY_1F^{-1}$ мы получаем следующее решение уравнения (1) с потенциалом (9)

$$\frac{e^{ikr\cos(\theta)}}{r^2\left(\sin\left(\theta\right)\right)^2 + C}.\tag{10}$$

В качестве другого примера рассмотрим два решения уравнения (1) с потенциалом $u=-k^2$

$$Y_{1} = \frac{J_{p+1/2}\left(kr\right)P\left(p,\cos\left(\theta\right)\right)}{\sqrt{r}},$$
(11)

$$Y_{2} = \frac{Y_{p+1/2}(kr)P(p,\cos(\theta))}{\sqrt{r}},$$
(12)

где p — параметр, $J_{p+1/2}, Y_{p+1/2}$ — функции Бесселя первого и второго рода, P — функция Лежандра первого рода. Из уравнений (7), (8) получаем F, зависящую только от θ

$$F_{p}(\theta) = -\int \sin(\theta) \left(P(p,\cos(\theta))\right)^{2} d\theta.$$
 (13)

Из формулы (6) получаем новый потенциал

$$\tilde{\tilde{u}}_p = -k^2 - 2 \frac{\frac{\partial^2}{\partial \theta^2} \ln \left(F_p \left(\theta \right) \right)}{r^2}, \tag{14}$$

где $\tilde{\tilde{v}}$ не зависит от k. Заметим, что $\tilde{\tilde{v}} = \frac{f(\theta)}{r^2}$ имеет вид потенциала Калоджеро–Мозера. Проблема интегрируемости потенциалов типа Калоджеро–Мозера продолжает привлекать внимание исследователей в области математики и физики [20].

При целых неотрицательных значениях параметра p функцию F можно получить в явном виде. Так для $p=0,\,1,\,2$ мы имеем

$$F_0(\theta) = \cos(\theta) + C, F_1(\theta) = (\cos(\theta))^3 + C,$$

$$F_2(\theta) = (9(\cos(\theta))^4 - 10(\cos(\theta))^2 + 5)\cos(\theta) + C,$$

где произвольные константы C для каждой F_p , естественно, могут быть выбраны независимо.

Из (14) получаем соответствующие потенциалы

$$\tilde{\tilde{u}}_0 = -k^2 + 2\frac{C\cos(\theta) + 1}{(F_0(\theta))^2 r^2},$$
 (15)

$$\tilde{\tilde{u}}_1 = -k^2 + 6 \frac{N_1(\theta)}{(F_1(\theta))^2 r^2},$$
 (16)

$$\tilde{\tilde{u}}_2 = -k^2 + 10 \frac{N_2(\theta)}{(F_2(\theta))^2 r^2},$$
(17)

где

$$N_{1}\left(\theta\right)=\cos\left(\theta\right)\left(\left(3\,\left(\cos\left(\theta\right)\right)^{2}-2\right)C+\left(\cos\left(\theta\right)\right)^{3}\right),$$

$$N_2(\theta) = \left(45 (\cos(\theta))^4 - 54 (\cos(\theta))^2 + 13\right) \cos(\theta) C + \left(9 (\cos(\theta))^4 + 72 (\cos(\theta))^2 - 70\right) (\cos(\theta))^4 + 5.$$

В качестве примеров точных решений задачи рассеяния с потенциалами (15)–(17) мы снова рассматриваем плоскую волну $\mathrm{e}^{ikr\cos(\theta)}$ для исходного $u=-k^2$ и применяем двукратное преобразование Мутара с соответствующими Y_1 и Y_2 из формул (11) и (12). В результате получаем следующие точные решения

$$\tilde{\tilde{Y}}_0 = e^{ikr\cos(\theta)} \left(1 + \frac{i}{krF_0(\theta)} \right), \tag{18}$$

$$\tilde{\tilde{Y}}_{1} = e^{ikr\cos(\theta)} \left(1 + 3 \frac{\cos(\theta) \left(ikr\cos(\theta) - 1 \right)}{k^{2}r^{2}F_{1}\left(\theta\right)} \right), \quad (19)$$

$$\tilde{\tilde{Y}}_2 = e^{ikr\cos(\theta)} \left(1 + \frac{M(r, \theta, k)}{k^3 r^3 F_2(\theta)} \right), \tag{20}$$

где

$$M(r,\theta,k) = 5i\left(3\left(\cos(\theta)\right)^2 - 1\right)$$
$$\left(\left(3\left(\cos(\theta)\right)^2 - 1\right)r^2k^2 + 6ikr\cos(\theta) - 6\right).$$

4. Результаты и обсуждение. Собственная функция задачи на собственные значения двумерного оператора Шредингера позволяет получить преобразование Мутара для потенциала. Однако результирующий потенциал зависит от собственного значения, соответствующего собственной функции. В статье показано, что в ряде случаев двукратное применение преобразования Мутара приводит к тому, что можно получить потенциал, не зависящий от собственных значений. Важно отметить, что преобразование Мутара для получения новых решений требует квадратур, поэтому получение собственных функций в явном аналитическом виде для нового потенциала не всегда возможно. Если для нового потенциала собственные функции получаются в явном виде, то мы можем говорить о новой разрешимой двумерной проблеме собственных значений. Здесь говорится, что задача разрешима, если она позволяет получить решения в явной аналитической форме. В этой статье приведены примеры новых разрешимых задач на собственные значения в случае оператора Шредингера с осевой симметрией. Для новой решаемой задачи можно попробовать еще раз построить двукратное преобразование Мутара. Нахождение всех разрешимых задач на собственные значения оператора Шредингера, которые можно получить с помощью двукратного преобразования Мутара, остается открытой проблемой.

Финансирование работы. Данная работа финансировалась за счет средств бюджета института. Никаких дополнительных грантов на проведение или руководство данным конкретным исследованием получено не было.

Конфликт интересов. У автора нет конфликтов интересов.

- 1. L. D. Landau and E. M. Lifshitz, *Quantum Mechanics:* Nonrelativistic Theory, Pergamon Press, Oxford (1977).
- P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, N.Y. (1968).
- 3. L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).
- 4. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics. A Unified Introduction With Applications, Basel-Boston, Birkhauser Verlag (1988).
- 5. Fred Cooper, Avinash Khare, and Uday Sukhatme, Phys. Rep. **251**, 267 (1995).
- A.A. Andrianov and M.V. Ioffe, J. Phys. A: Math. Theor. 45, 503001 (2012).
- D. J. Fernandez, Trends in Supersymmetric Quantum Mechanics in: Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics, ed. by Ş. Kuru, J. Negro, and L. Nieto, Springer, Cham (2019).
- Sanjana Bhatia, C. N. Kumar, and A. Nath, Phys. Lett. A 492, 129228 (2023).

- 9. G. Gordillo-Núnez, R. Alvarez-Nodarse, and N. R. Quintero, Physica D: Nonlinear Phenomena 458, 134008 (2024).
- 10. V.B. Matveev and M.A. Salle, *Darboux Transformations and Solitons*, Springer, Berlin (1991).
- 11. T. Moutard, J. Ecole Polyt. 45, 1 (1878).
- C. Athorne and J. J. C. Nimmo, Inverse Problems 7, 809 (1991).
- 13. A. G. Kudryavtsev, Phys. Lett. A 377, 2477 (2013).
- 14. A.G. Kudryavtsev, Theor. Math. Phys. **187**(1), 455 (2016).
- 15. A.G. Kudryavtsev, JETP Lett. 111(2), 126 (2020).
- 16. A.G. Kudryavtsev, JETP Lett. 113(6), 409 (2021).
- 17. I. A. Taimanov and S. P. Tsarev, Theor. Math. Phys. **157**(2), 1525 (2008).
- A. P. Veselov and S. P. Novikov, Dokl. Akad. Nauk SSSR 279(4), 784 (1984) [Soviet Math. Dokl. 30(3), 705 (1984).
- A. V. Ilina, I. M. Krichever, and N. A. Nekrasov, Funct. Anal. Its. Appl. 53, 23 (2019).
- Y. Berest and O. Chalykh, Commun. Math. Phys. 400, 133 (2023).