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The deconfining temperature T. is estimated from the minimum of the free
energy of the vacuum. T is expressed via scale anomaly through the gluonic
coudensate to be around 200 MeV and does not depend on N, at N. — oco.

1. It is known ! that the nonperturbative vacuum energy density e is nonzero
due to the scale anomaly 2, namely
(a,) ~ 1 a, 2
e=""—% <Gy, Gy, >F —Nem— <G > 1
16a, 3732 )
One can associate with ¢ the zero-temperature limit of the free energy F =
E - TS, and 1epresent F in the form

F=eV3+ f(T) (2

where f(T) is obtained in the usual way via statistical sum 3. Here we calculate

f(T) representing gluonic field A, as a background field B, plus perturbative
gluonic part a,. To th: lowest order in a, the statistical sum Z¢ can be written
as

o
Zo =< exp {/ f(t)d—;Sp (%e—tw _ etD’(B))} >p= e~ fo(THT (3)
0
where £(t) is the regularizing factor, i.e. in th. (- regularization it is £(t) = £ (A—lfz}))-'
with s —» 0, and M — regulator mass. In (3) W and D?(B) are the gluon
and ghost propagators in the backrgound B,, and Sp is the trace in Lorentz,
coordinate and color spaces . Finally, <>p means averaging over fields B,.
In the limit B — 0 one obtains for fo(7') the usual free-gluon-gas expression

3 2 _
fo(T)=T(NZ-1) /Zlnkq+k, 3"“; = fo(T=0) - LMHH%T‘*. (4)
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Here in fo(T =0) we have included all infinite constant terms, which we finally
disregard since we normalize the free energy at T =0 by the term eV3 (see
(2)). We show below that for the confining background B, the free energy
f(T) contains contributions of two-gluon glueballs, three-gluon glueballs etc. and
their interacting emsembles. From physical point of view fo(T) contains the most
important contributions both in the confining and in the deconfined phases. In
the first case thosc are glueballs, and in the second—free gluon gas, which gives
dominant contribution to the free emergy immediately beyond the phase-transition
region 3.

In what follows we identity the main term in fo(T) and, imposing the properties
of continuity and minimality on F in (2), calculate the deconfining temperature.

2. For the averaging procedure in (3) we can use the cluster expansion 5,6
and write
Zomcempp>amexp (<o >n byl >n (<o) Hof )
where
e dt 2 © .dt_ d*zT
E/ £(t)—Spe'? (B)=tr/ £(t)—Dz i exp(—K)®(z, z) (6)
0 t o t Vs

In (6) we disregard the spin interaction term ( the difference between —W and
D%(B) in (3)) and use the Feynman-Schwinger (FS) representation 7 where

1 t E
K= —/ 2%dr, ®(z,y) = Pexp ig/ B,dz,
4 J, v

Note that the path integral in (6) is over such trajectories z(r) which return
to the same point z. When B* =0, then &(z,z)=1 and ¢ =—fo/T corresponds
to the closed trajectories of a free gluon at a given temperature T, yielding (4).

In the confined phase < ¢ >p~< ®(z,z) >p i.e. a Wilson loop which obeys
the area law ©:

< ®(z,z) >p=exp(—0.5(z, ),

where S(z,z) is the minimal area inside the trajectory z(r), and o, = %0, o
is the string temsion. The area law confines trajectory to the size R ~ o~ 3
One can identically rewrite the integral (6) as that corresponding to two gluons,

propagating from a point z to a point y, interacting via confining area law term

(1)
~_0__< op >= / &(t) dt/ dtl Dz(r)Dz(T Jexp(—K — K' = 04S)]. (7)

with K'=3 7" 22(+')d7’, and the simbol [ ], means that the Matsubara series
for the centet of mass time is taken.

Thus < ¢ > is a two-gluon bound-state Green’s function of which the zero’s
Matsubara frequency is kept due to the integration in d(z4 — y4). It gives no
contribution to the free energy whenever relative motion of gluons is confined.
When however, 0 — 0, and relative size of the bound two- gluon system compares
to V31/ % one finally recovers the limit of free gluons (4) . Ome can visualize this
picture as ensemble of pairs of gluons frozen by confinement forming condensate
for T < T., which”evaporates” for T > T. and become a free gluon gas.

3. The free glueball gas contribution is associated with the second term in
(5), < ¢®>p, where ¢ is given by (6).
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The confining dynamics in < ¢? >p is given by the term

< trd(z, 2)trd(y, y) >~ exp(—0aS(z(r), #(r"))) - ®

where we have defined the minimal area surface S joining the trajectories of two
gluons z(r) and Z'(7').
In this way we obtain
o dt d dz d*
< ¢? >B=/ f(t)—sz(u)—uDz'———s—’exp(—K ~ K' — 0,5) 9)
h t u Va Va
Introducing the full set of bound states of two glucns (glueballs)
< zy|n > and integrating over relative coordinates we find finally the glieball
contribution to fo

3/2m5/2
2_ T _ d®p _p /o ., VM T g
o] _—'2"!'<<P2 >B—_TV3/(27F)38 Bvpi+ ~——(F)3/2—€ / (10)

Here we kept only the lowest glueball mass My and consider the case T < Mo.
Note that in the limit B, — O the whole term < ¢* >p —(< ¢ >p)* tends
to zero, since it is a connected contribution. In the deconfining transition when
o — 0 also My — 0, and féz) vanishes.
4. Combining (2),(4) and (10) we obtain the relation

3/2
Mo/ T5/2 _Mo/T

F_. 11 _a<G*> (NZ-1)
——N, hd — —(—2"7;)—3/76 (11)

Va 37T 32x 45

2
T M&(T-T.) -

Here we have introduced the tranmsition function ©(T — T.) which is very close to
the step function and corresponds to eq.(7). Indeed the steepness of this function
is due to the fact that it is zero for & > V3_2/3
V3_2/3, ((]1) gtows to a value given in (4). Since we know that the free energy
F should be a continuous function ® of o around ¢ =0 (or of T around T¢) the
nearly step function ©(T — T¢) should be cancelled by other terms in (11).

We shall now see that the first term on the rh.s. in (11) indeed jumps at

=0 (at T=1.) in the opposite direction to that of él). To this end we

and only for ¢ as small as

decompose the nonlocal vacuum correlator as in &°
< ttEi()E;(y) >= D (= — y)é;; + 0(8D7) (12)
< t1Bi(2)B;j(y) >= DP(z — y)éi; + 0(8D7) (13)

where 0(8D;) means terms proportional to derivatives of another independent
function D;. At T=0 we have DF = D¥ DF = DP, which is not true for 7> 0.

Out of four independent nonperturbative correlators DF, DB DE DP only the
first one is responsible for confinement 7, providing nonzero string tension

g=%/ DE(V? + ?)dadt + ... (14)

where dots stand for the contribution of higher order cumulants.
On the other hand all four correlators enter as a sum in the vacuum condensate

in (1)

< G >= D®(0) + DE(0) + D®(0) + DZ(0) (15)
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At the tramsition point, T =T, D¥ is vanishing according to (14), and this
provides also a jump in < G2 > due to (15). This jump should be matched (and
cancelled) in the total expression for the free emergy (11) by the second term,
(()1), thus making F continuous.

In addition to this continuity argument ome can also use the princple of
minimality of F 3, to argue that three other quantities Df(0), D®(0) and DF(0)
should stay unchanged at T >0 °. This statement has been confirmed in Monte-
Carlo computations in two ways. It was shown that only a part of the condensate
< G? > has a jump across T =T, but the rest stays nonzero for T > I, n,
In space-like Wilson loops !? the string tension oB was measured for T > T,
(connected to DP as in (14)) and found nonzero and close to o at zero T.

Therefore we can define D¥(0)=7n < G? > [1 - ©(T — T.), where 7 is weakly
dependent on temperature and

i) n(T=0)=1/2 if DF(0)=DP(0) is small as compared to D?(0).

ii) (T =0)=1/4 if DF(0)=DE(0)

We note that 7 is a part of < G*> > which disappears during the deconfinement
transition.

The correlator D; defines the nonperturbative tensor force' in heavy quakonia
13 4nd computations 1* show that Dy(0) is at most of the same order as D(0).
Moreover, recent lattice calculations of D(0) and D;(0) '* support this conclusion.

Now we can put the continuity condition near T =T, for the free energy F in

(11):

3/2

U an<G> M TE’ZE_MO,T _(N2-D?

RGN 7 = O P T 5 e (16)
Solving for T, we obtain
165N na, < G* > 1/4 C(Mp)
= ZAT0) 17
e =( R2x3(NZ-1) yr NZ ) (17)

where C(Mp) comes from the second term on the Lh.s. of (16),

C(My=1GeV) = 7.65-10~*

5. One can see in (17) that T, is 0(1) at N. — oo, since a, < G? > is O(N)
16, For N,=3 we obtain

T, =220MeV.(n - \)*/* (18)

where ) measures gluonic condensate in units of the standard value L 9‘;‘- <

G? >,,=0.012GeV*, A = :Tﬁ;z: For the options A=1,n= % + § we obtain

T, =185 + 156 MeV (19)

This value should be compared with the lattice value for glnodynamics, T, =
197 = 254MeV 17 and implies that X~ 2+ 4. 7

Also the fact that T, is O(1) for large N, which is crucial for our mechanism
of deconfinement. Note, that the glueball term C(Mp) is small and suppressed at
large N,, which means that the Hagedorn-type mechanism is not operative in
our case.

Summarizing, we have suggested a mechanism of deconfinement, in which a
part of gluonic condensate evaporates into gluons in the deconfining transition.
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Requirements of minimality and continuity of the free energy allows to estimate the
deconfinement temperature within the uncertainty region (19), which is reasonably
close to the lattice results.
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