IMucema B XITD, tom 55, Bein.12, crp.717 - 721 25 moust 1992 r.

ON THE SIGN REVERSAL OF THE FLUX-FLOW HALL
EFFECT
IN TYPE-II SUPERCONDUCTORS

N.B. Kopnin, B.I. Ivlev, and V.A. Kalatsky
L.D. Landau Institute for Theoretical Physics, RAS
117334 Moscow, Russia

Submitted 27 May 1992

For the BCS model of superconductivity, the Hall voltage in the mixed state
is shown to be proportional to the energy derivative of the quasiparticle density of
states. There is a possibility that the sign of the Hall effect in the mixed state is
different from that in the normal state. In the latter case, the Hall angle changes
its sign as a function of the magnetic field below H,;.

Introduction

A sign reversal of the Hall angle as a function of magnetic field has been
observed in recent experiments on high-temperature superconductors *~*%, and
several theoretical models 35® have been suggested to explain this behavior. The
change of sign, however, is not a new phenomenon for the Hall effect in the
mixed state: it has been observed for V and Nb already in seventies (see 7 and
references therein). This effect seems to be quite general and needs an explanation
in terms of the vortex dynamics not specific for high-temperature superconductors
alone. Experimental conditions for the Hall-effect measurements in superconductors
correspond to the low-field limit since the cyclotron frequency is w, < 7~! when
H does not exceed H,;. The normal-state Hall conductivity is of ~ (weT)om,
and is small compared to the usual Ohmic part o,. This implies that the Hall
effect in a not very pure superconductor can be treated as a perturbation on the
background of a viscous flow of vortices. (In Refs. ° the Hall effect has been
considered microscopically for the opposite, extremely pure, limit.)

In the present paper we derive a time-dependent Ginzburg-Landau theory which
includes two mechanisms responsible for the Hall voltage. The first is the usual
effect of the magnetic field on the normal current. The second mechanism, specific
for vortices, is their traction by the superflow: the vortices have a velocity
component parallel to the transport supercurrent. This gives rise to a Hall voltage
since the averaged electric field is perpendicular to the vortex velocity v;. The
second mechanism dominates for fields below H,s.

Modified TDGL equations

The time-dependent Ginzburg-Landau (TDGL) equations are
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Here F,, is the condensation free energy of a superconductor,
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To account for the Hall effect within the TDGL formalism, one can include
-the Hall component into the normal current 011

Jn=0nE +c¥E x H|/H . (4)
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This contribution, however, is not the only one. In the dissipative flux-flow regime,
vortices move perpendicular to the transport current, so that the averaged electric
field induced in the superconductor is parallel to the transport current. In the
ideal fluid, however, a vortex moves together with the flow; this complete vortex
traction by the flow is a consequence of the Galilean invariance. For the TDGL
~ model, there is no Galilean invariance since the excitations are at rest with the
crystal lattice. However, some vortex traction can still exist: it can appear through
a small imaginary part of the relaxation comstant y=+'+ i7" in Eq. (1). Indeed,
if v were purely imaginary Eq. (1) would be a (nonlinear) Schrddinger equation
which is Galilean invariant.

The TDGL model with a complex v can be justified by the microscopic
theory of nonstationary superconductivity. To account for the Hall effect one has
to go beyond the quasiclassical approximation generally used in the theory of
superconductivity and to take into account energy dependences of such quantities
as the density of states, the pairing potential  (the phonon Green’s function
for the phonon model of superconductivity, for example), relaxation times, etc.
In the present paper we consider the simplest example of the BCS model of
superconductivity. Within this model the only contribution to the vortex traction
is due to the energy dependence of the quasiparticle density of states.

The TDGL equations can be derived only for gapless superconductors. We
consider a simple case of a gapless regime for a weak pair-breaking with the
characteristic time 79 such that 7,7, » 1. One can show that the ratio of the
imaginary and the real parts of v is
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where A is the BCS pairing constant.

The imaginary part 4" is proportional to the derivative of the density of states
v(£p) with respect to the quasiparticle emergy &, =€, — Ep, taken at the Fermi
surface, z.e., for £, =0. It is of the relative order of T./Er, nevertheless, it is
very important for the Hall effect in the mixed state of superconductors.

Vortex motion and the Hall effect

Low magnetic fields, B <« H.a.

The variation of the total free energy, 1.e., of the condensation energy, Eq.
(3), together with the magnetic energy, caused by the displacement of the vortex

lattice by an arbitra.ry vector J: is 12 (omitting the surface terms)

6F = / +(@0A%2 4+ LE cnl(d@)d)av . (6)
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The free-energy variation of Eq. (6) is the work done by the force exerted by
excitations. Ii the integration in Eq. (6) is extended over the area So of ome
vortex-lattice unit cell, we obtain the force acting on one vortex. This force
should be balanced by the external Lorentz force from the transport supercurrent.
Therefore 2

(dj,,xn)/ Y(d V) (‘Z—‘I'+2ze¢q:)_cc+_(d'”)] )ds. (7)

Here # is the unit vector of the vortex circulation, and ¢, = mc/2e is the flux
quantum.

The scalar potential ¢ in Eq. (7) is proportional to vy. It obeys the equation
which can be obtained as follows. Note that
“8F §F §F
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where x is the phase of the order parameter. From divj=0 and Eq. (1) one has
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Here & = ¢ + (1/2e)(dx/6t), and Cj=j—(c/2e)§x. The last two terms in the
right-hand side of Eq. (9) are associated with the Hall effect.

For a slow vortex motion, the time derivative in Eqs. (7, 9) can be replaced
with —7 V acting on variables describing a static vortex. Therefore, Eq. (7)
contains either the known functions or the function @ which can be found from
Eq. (9). The boundary cenditions for ® are: (1) @ =0 for large distances from
the vortex, and (2) the scalar potential ¢ is finite at the center of the vortex.

We consider a superconductor with a large Ginzburg-Landau parameter x. In
this case one can neglect both the term with the vector potential A in Eq. (7
and the normal-state Hall contribution to Eq. (9).

The magnitude of the order parameter is | ¥ |=| ¥o | f, where | ¥p | is its
equilibrium value. For a single vortex, f is a function of the distance from the
vortex axis, p, the order-parameter phase is just the azimuthal angle x =¢, and
g-= (0, —c/2ep , 0) in ihe cylindrical coordinate frame (p, ¢, z) associated
with the vortex. :

Let us put & =&, + 1, where
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Here ¢ is the temperature-dependent coherence length. The function pg satisfies
the equation '
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with the boundary conditions po=0 for p— 0o and pp=¢&/p for p— 0. Here
u=28e2y'¢? | ¥y |2 /o, is the numerical factor equal to the ratio scuared of ¢ and
the electric-field penetration length. For a weak pair-breaking, 70T > 1, the factor
u=3579. For 7,T. < 1 (high concentration of magnetic impurities) u =12. The
term with ®, has been obtained earlier for purely dissipative flux flow. The new
term p satisfies the equation
df

d2 1 d 1
= —uf2#1=*u§f£ (12)
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with the boundary conditions p; =0 for both p=0 and p — oo.
Collecting all the terms in Eq. (7) we obtain

Jtr =0y E + o [E x H]/H, (13)
where " % =
QUT, c2 . Uy 2
e ( B ) , and o;{=51gn(e) 3 ( I; ) (14)

are the Ohmic and Hall conductivities in the flux-low regime, respectively. The
sign of the electron charge in 0;{ appears since the circulation of the phase is
chosen for the positive charge of carriers.

The constants of s
- )
o / (oD + L2) s (15)

and
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g= / e s (16)
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can be calculated numerically from the solutions of Egs. (11) and (12) using
the known function f. The constant a has been calculated earlier (see Ref. 1?):
a =~ 0.502 for u=135.79, and « ~ 0.438 for u=12. Solving Eq. (12) for the
function p;, we obtain 8 = 0.27 for u=3.79. One can consider also other values
of u which model various pair-breaking mechanisms. For u= 12 (high concentration
of magnetic impurities) 8 = 0.21. For small v < 1, one has S =1 since u; ~u

and po=¢/p.

High magnetic fields, B — H,,.
In the limit of high magnetic fields, H,» — H <« H.2, one needs to solve the .
linearized TDGL equation with ¢ =—FE; 2z — E,y. Assuming A, =Bz, A; =0, one

finds the solution within first-order terms in F
¥ =" Cyexpli(gn + 2eEyt)(y + cExt/B)] -

- exp [——22—2 (:c - d;yt - 26;1;)2 + 2met?v(iE, — sign(e)Ey)(z - ;3;)] 17

This solution describes a slightly modified vortex lattice moving with the velocity
iy =(cEy/B ; —cE;/B). It is similar to that obtained in 4.

The order-parameter magnitude can be found from the nonlinear GL equation.
The coeflicients C,, correspond to the Abrikosov vortex lattice with the parameter
Ba = 1.16. After calculating the averaged total current using Egs. (4) and (17)
one obtains Eq. (13) with

. Ha-B
w=%+%%WUWH=%D+%3ﬁ;ﬂ, (18)
a;{ =oH 4 sign(e)an%%fg—B]. (19)

Adlc2

Discussion

The ratio of the Hall and the flux-flow conductivities gives the Hall angle. For
B < H.z, the Hall angle is independent of the magnetic field: tan Oy =sign(e)5(/a.
It is negative for quasiparticles with a positive derivative (8v(0)/8¢,) and vice
versa. The Hall angle becomes field-dependent as B — H,»:

_on oy uHa—B ,
tanOpy o +51gn(e)(2 N (20)

In the normal state, H > H.,, the sign of the Hall angle is controlled by
the effective sign of the charge carriers, i.e., by the sign of ¢¥., The Hall
conductivity in the mixed state, however, contains the different quantity, i.e., ",
which is proportional to the energy derivative of the density of states averaged
over the Fermi surface. For a simple isotropic Fermi surface, the sign of the
Hall conductivity in both the normal and the mixed states is equal to the sign
of (e/m*). However, for a complicated Fermi surface which has electron-like and
hole-iike parts, there appears a new possibility: the signs of (e¢) and o7 can
be different since they result from the averaging of the different sign-alternating
quantities. If these signs are opposite, the Hall angle will change its sign with a
decrease in the magnetic field below H,,.

Both the same and opposite signs of oF and o;{ seem to be observed
experimentally for usual superconductors 7!%. As a rule, the sign reversal is
observed for pure Nb and V which have complicated Fermi surfaces, while there is
no change in sign for dirty materials. According to our results, the sign reversal
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depends crucially on the shape of the Fermi surface. The effect of impurities might
be a simplification of the Fermi surface due to the scattering; as a result, there
would be no sign reversal. Moreover, the shape of the Fermi surface depends on
the position of the Fermi level. These may be the reasons why the experimental
data for the Hall angle is so diverse for various samples.”

The experimental data for high temperature superconductors provides even
more puzzle: the sign reversal is observed usually for temperatures close to T,
and disappears for lower temperatures. This effect, surely, deserves futher studies.
For example, one can investigate contributions to the imaginary part 4" which
can come from energy dependences of the pairing poteuntial and/or of scattering
times in various models including the phonon model of superconductivity. We will
consider these effects elsewhere.

The authors are grateful to A.S. Ioselevich and V.L. Pokrovsky for valuable
discussions.
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