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- The problem of quantum scattering of an electron by a short range impurity -
in a two-dimensional electron gas in the presence of a perpendicular magnetic and'a
_ longitudinal clectric field is solved. It is shown that additionally to the bound state
which exists also in the case of zero electric field, in the presence of an electric
field N novel nondegenerate quasi bound states appear with energies close to the
N-th Landau level, irrespective whether the impurity is attractive or repulsive.

In analytical and numerical papers, which adress magnetokinetic phenomena

in bulk semiconductors !, the Quantum Hall Effect 7, the conductance of

a microconstriction %, and Variable-range-hopping magnetoresistance °, it was
important to investigate the electron scattering process by an individual impurity
in a magnetic field. In these works, the scatterer is of short range type. In
paper %, the scattering on an impurity of the drifting electron is considered for
the case of crossed electric and magnetic fields, but the bound states near the
lowest Landau-level «(LL)} was mainly considered. In our paper we ‘consider more
carefully the possible bound states around the higher Landau levels, too. In the
~ paper 3 the intersubband tunneling of drifting electrons via an impurity is studied
and the scattering potential is taken to be a é-function. On the incorrectness of -
the use of the 2D — é—function as a scattering potential is written in the works
4-6 In the works "~° we used a method,which allows to circumvent this difficulty.
Additionally our method turned out to be very efficient for the investigation of
the structure of bound states. Hence, the flirther concise calculations lie in- the
context of this method. \

Let the magnetic field H is uniform and directed perpendlcu]arly to the plane
of the two-dimensional electron gas (2DEG), and the uniform electric field E lies
in the plane of the 2DEG, being directed along the y axis. It is' well-known that
the electron under such circumstances drifts along the z axis with the velocity.
v=cE/H. In the Landau gauge, the wavefunctions of that motion, normalized to
unity fdzr\If,,k(r) Y (1) =8(k — k')bnnr, have the form ' .

1
‘P' ( ) (21)3/4\/'_

Here, D, are the functions of the parabolic cylinder with integer indices, n = -
0,1,2,.. 1°©. Here we introduced the dimensionless coordinate r = ({,s) with
5 \/_/aH z, s=+/2/ag -y; the momentum k—aH/\/— pz/h, the drift velocity
\/—/anH v, where the magnetic length is ag = Vh/mwg, and the cyclotron
frequency wy =|e|H/mec. The energy of the drifting electron in units of hwy reads”
enk =n+ 3 + 20k — a® and is composed from the kinetic "energy of the cyclotron

e . Dp(s — 2k + 2a). (1)
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motion n + — the kmetlc energy of the dnftlng motlon a?, and the potential
energy Za(k - a)
" At a fixed energy ¢ there is an infinite set of drifting states which are separated
in space if o « 1/4/n. Let be, addltlonally, that such a drifting state with a
wavefunction \IkaN(r) and ky = (e — 3 +a?)/2a is scattered by a short range
~ impurity - (which is an s-scatterer)‘sitting in ro. The scattered field for such -an
impurity is & ‘
‘ Xy
W) = =2 (o) o) @
Here, G.(r,7¢) is the Green’s function of outgoing waves of the Schrédinger’s
equation without scattering potential. G(r,ro) can be expanded in eigenfunctions
(1) (see 11) Addltwnally, in a further expansion of the small parameter « the
N-th LL gives the main contribution:

~ Ge(r,70)lro=0 =

(27r)3/2N' 2k—enfa—1i-0

Here, we set for convenience ro = 0 and omit the gauge factor e*** (we can
eliminate it by slightly varying the gauge) and ey =¢— N —21—a®. The expression
(3) is valid everywhere except the region near the 1mput1ty where the Green’s
functlon diverges:

s

/dk e DN(8—2k)DN( 2k) (3)

Ge(r,ro)lr;,ﬁf‘;[ln(lr—_‘;o—,)+Ke(ro)]. : G

The quantity K.(ro) plays an important role for the analysis of the structure
of bound states because it appears m the denominator of the scattering amplitude

in (2):

D,(ro) = A+ Kc(ro), 7A=1n(7%{1:), ’ ' (%)

a

where a is the 2D scattering length of the impurity. scattering potential. The -

exact formula for K.(ro) takes the form 1).

K(ro)lro=o0 = 5 Z ——=7 Dalen/@)Donos(~ien/a) +

En

1]+Kea_0—K (6)

where
Keq= f__¢(1/2_e) C+Mh2, M

and ¥(1/2—¢) is the digamma function !°, C=0.577.. is Euler’s constant . Eq.(7)
can be obtained using !®!? from the well-known Green’s function of an electron
in .a magnetic field 3. The plots of the functions K. and K, ,—o are given in
Fig.l. The presence of the electric field leads to a non-vanishing imaginary part of
the Green’s function, and to oscillations of both real and imaginary part of K,

These oscillations are localized close to each LL ‘and do not overlap with those of
neighboured levels if o € 1/ VN. The amplitude of the oscillations. of K, increase

1) The principal way how to obtain (6) and a similar result are given in ?
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t with the decreasing of the electric field as 1/a. In this case it is convenient to
rewrite (6) in the form ‘ ‘

~

] Ko = sy - Dulen/@)Dins(~ien/e) + P, ®

where P is a quantity in the order of unity which weakly depends on N and
on the energy in the vicinity of the N-th LL. With the condition o €« 1/N
the imaginary part of P is exponmentially small. Thus we can take P as a real

constant. )
Bound states are defined as scattering amplitude poles & —il', located near the

real energy axis. These poles are solutions of the equation

R 1 o ~ _ _ '
‘ D;=A+m‘DN(EN/C!)D._N_I(—ZSN/Q)—0, A—P+A. (9)
The assumption of the smallness of T allows us to write it in the form
) ImK ‘ :
= . 10
r [d/deReKeLz_ (10)

From Fig. 1 and the general form of equation (9) immediately follows the first
important result: bound states exist omly if the condition-

Ao < 1 (11)

is fulfilled, wl;ercas in the absence of an electric field (a=0) bound states always
and for each impurity exist. ) -

Ke

!
!
[}
1
!
!
1

1 1.5

(l)’lots of ReK, (——) and I.rnKt (=) as well as K, 40 (- - -), for N=1 and N=2. « is equal to
.07. The separation of oscillations belonging to necighboured Landau levels is clearly to see. .
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If the condition (11) is satisfied, there is at least oné bound state, fully :

equivalent to that at a =0. Using the asymptotic form 2 of the functions Dy :
and D_y_; in the Lmit |ex/a| — 0o, we get from 0 the bound state energy |
relative to. the N-th LL

EN T

- )

and their width

r 2 ex
N (ak)yN+r P (ah)?

‘As it was. to be expected, the width of this bound states rapidly vanishes for
a — 0 and the states become non-decaymg This bound state can occur below a
'LL (if A <0) as well as above (if A > 0)

The presence of the electric field . gives a set of new nondegenerate states

-Lh.....u,.,

(12) |

_2..} (13)

near each LL- with N > 0. Their number for the N-th LL is equal to N in

correspondence with the number of zeros in the imaginary part of K,

_ [* [Dn(en/a)) \ ‘
ImK, = g%——— o (14)

The twofold degenerated zeros of ImK, lie very close to simple zeros of the real
part of K, ’ :

ReK, ‘71" DN(EN/a) [1 ND N-1(—ten/a) - T/ DN(EN/Q)] P09

It is this fact that leads to the existence of a set of narrow bound states. Using

(14), (15) and the Wronskian relation W([Dn(z), D-n-1(—iz)] =i}, we get the |

energies of the bound states up to the second order in «

em=aom - 2a* A, m\=‘1,2,..,N.b C (16)
Their widths are , ) '
‘ I ~ o3R2. (17)

Here, o} are the zeros of the N-th Hermite polynomial. ‘
From (17) and (9) follows that the existence of non-decaying bound states
(TR = 0) is possible for a moderate strength of the impurity, |A]=|P|~ 1. The

wavefunction of these bound states is proportional to thé scattered field (2), and’

hence to the Green’s function (3). As it was to be expected, the wavefunction of
these bound states is localized. Indeed, if A =0, then ef/a =o} and the zero

of the denominator of the integrand in (3) cancels the zero of Dy(—2k). In this ’
case, the right hand side of (3) is a Fourier integral of a smooth function and

becomes exponentially small for [¢]-» oco.

) It is obvious that these bound states exist not only in a uniform clectnc field
but they are characteristic for any smooth potential in which drifting states are

 present (for example, in a para.bohc confinement potential °).
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