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We study the confinement of acoustical modes’ within 2DEG due to onfy the
electron-phonon interaction. The confined modes split out from the bulk phonons
even at uniform lattice parameters.

One of the current topics of the semiconductor physics is the confinement of
phonons in semiconductor heterostructures 1-3 This phenomenon is interesting
because of fundamental aspects, as well as its affect on the electron transport that
is very important for applications. It is well known that the phonon confinement in.
the heterostructures is due to different lattice characteristics of the semiconductor
compounds forming the heterostructure (various lattice constants, lattice forces,
symmetry, etc.). On the other hand, existence of free carriers in these layers is
not considered as the main reason for the confinement effect.

In this paper we predict and study the phonon confinement originating from
the electron-phonon interaction. We show that confinement of acoustical modes
appears due to only the electron—phonon interaction if there is an electron gas
sheet (3D or 2D electron ,layer). This effect exists even at the uniform lattice
characteristics. Such a physical situation and the electron layers can be realized
by modulation doping, for example under §-doping *.

The following two known phenomena can be the base for understanding of
proposed mechanism of the phonon confinement. Firstly,the electrons bring about \
the renormalization of phonon spectrum and always lead to a reduction of the
~elastic modulus and a softening of the lattice. Secondly, the embedded layer char-
acterized by decreased elastic modulus always splits the bulk acoustical spectrum
into bulk-like modes and localized modes. The latter are confined into or near the
embedded layer, and propagate along the layer. Therefore we can expect that the
electron-phonon interaction under the localization of electrons within the electron
sheet would lead to the phonon confinement effect.

We will describe the long-range acoustical vibrations of lattice by équation of
the sound waves °. : '
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where u; are components of displacement vector @ of medium, p is its density,
ok is the stress temsor. For simplicity, we consider the isotropic elastic ‘medium
and assume that electrons are also characterized by isotropic energy law. Then,
contribution of the lattice and the electrons to the stress temsor oy is %°.°
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ik =% + o) = (A + g unbin + 2p(uir = gikun) + bnbi, (2

where A and u are Lamé coefficients, and wu;; is the strain tensor. Then

the electron—phonon interaction is described by only-one constant of deformation y

potential b ® n is concentration of the clectrons.

We assume the electrons are confined into a sheet of thickness d by a
corresponding potential (for éxample, by electrostatic potential of the positive charge
of donor sheet). The phonon wave vector ¢ is restricted so that characteristic
decay length of modes outside the sheet «7'(g) is much larger than the layer
thickness d: k.n(g)d < 1. ‘

In such a case it is possible to consider the electrons as confined in a plane
(for example, in plane z = 0). Hence the conceniration of the electrons can
be written as: n(7,t) = n,(z,y)6(z), where n, is “surface” concentration of the
electrons. We consider that the electrons follow adiabatically the vibrations of
lattice and are redistributed in potential of the acoustic wave. Inequality &> hw
which is necessary condition of this adiabatic approximation always holds for the
semiconductors (& is characteristic electron energy, w is phonon frequency) The
potential induced. by acoustic wave is h(F) = buy — ep. Here ¢ is electrostatic
potential arised from the non-uniform redistribution of the electrons in space and
it is governed by Poisson equation:

Vip= -4-2;—8671,,(3!, v)8(z), (3)

€0 is the dielectric constant of crystal. We suppose that the dependence of all
variables on plane coordinates (z,y) has the form w;, ¢, h,én, x €971, where ¢ lies
in plane of the electron sheet. Change in the electron concentration én can be
calculated by using the perturbation theory for the density‘n‘la.trix

én,(z,y) = h(z,y,z=0)P({, T). o (4)

HereP(q,T) is the static polarization of the electron subsystem including the
quantization of the electron motion in z direction 7. If the number of occupied
2D subbands is large, the electron motion within the sheet is almost 3 dimensional.
In the contrary case, the polarization P(q,T) corresponds to the electron gas with
reduced dimensionality. The set of the mentioned relationships is sufficient to
consider the acoustical modes localized near the electron layer. -

Tt is easy to see that only longitudinal acoustical waves interact with electrons
in our model. Therefore it is convenient to consider the equation for relative
volume change uy instead of several components of the displacement of the lattice.
We seek the solutions which satisfy the following boundary conditions far away
from the sheet: uy,  — 0, z — +o00. The solutions can be written for both-
uy and ¢ = —eyp as ' ’

uy = Ae "l k=g ==  ¢=Be 9, . (3)

Relationship between the magnitudes of the acoustic wave and the electrostatic
potential is:

4ne?P(q,T)/eo
2q + 4re? P(q, T’)/eo'

B=-Ab (6)
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Expression for « is

3 | bzp( 7 T) 3
-3 22 g
* q ¢ A+2u 29+ 47e*P(q,T)/e0 UR

The right hand snie of eq. (7) is a.lways posxtlve This means that the solutions

decay exponentially far away from the layer. The same expression gives dispersion -

relation for the confined acoustical modes:

- b2 P(¢, T) g :
w? =g’ ("( A+ 2p 2q'+41re’P(¢j',T)/€o) ) (8)

. One can see from (8) that the frequencies of the confined phonons are always
less than the frequencies of the bulk one. The splitting value of the frequencies
depends on the fourth power of the coupling constant b. Distinction' between
the bulk phonons and the confined one also grows with increasing q: degree of
the confinement becomes larger as it is seen from relation (7) and the dispersion
relation - falls of from the linear behavior.

The term 4xe?P(§,T)/cp in denominator of expressions (6),(7), evidently, de-
scribes screening effect of the electron charge which is redistributed in . the elec-
tron sheet. We can introduce the characteristic wave vector ¢,. by equality:
@sc = 2xe?P(g,c)/€0- In the case of g < g,c, the total potential h(7) induced by the
acoustical wave is small, because the change of the bottom of the conduction band
buy and the electrostatic energy —ep compensa.te each other. In this Iimiting case

the dispersion relation takes a simple form w? =g%¢} (1 — (bPeog?/4xe2 (X + 2u)) )
and does not depend on parameters of electron band, quantization into sheet, tem-
perature. etc. Of course, this simple expression is.valid under certain mentioned
conditions. In this limit, the decay length of the acoustic mode outside the sheet
k! is proportional to g¢~3.

In opposite case ¢ > q,c the screening is not essential and the dispersion relation

ta.kes the form .
2,22 ¥ P(q,T) ' -
e (1- (m)) ®

In this case, the magnitude of the mode outside the electron sheet decays with
x~1 ~ ¢7%. Analysis of the polarization P(¢,T) shows that the parameter g,
and the confinement effect increase with decreasing temperature. Because of this
we will consider the case of low temperature in detail. The following analysis
will - clarify the actual situation ¢, < ¢ better. The value g¢,. is always small
comparable with kg') (i.e. Fermi vector of n** subband) for semiconductors with
large dielectric constant ¢y (for example, IV-VI compounds). This means that at
the region of g ~ kr, where confinement effect is more pronounced the screening
does not suppress the effect. In general, -for the semiconductors with modest ¢
the inequality ¢, < ¢ can be also true. In fact, maximum value of the g, is of
the ordei of inverse Bohr radius ap for semiconductors. Let the electron sheet is
created by means of doping. It is necessary to dope the semiconductor up to such
concentrations that n,a% > 1 to achieve the free carriers and conductivity %. But
this criterium is equivalent to the mentioned above inequality. When the criterium
' is hold, we can consider the case ¢ ~ kp and g,. < ¢ would be valid. The decay
length of the acoustic wave outside the electron sheet x~!=2(X + 2u)/b?P(q, T)q?
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is much larger than the wavelength 27x/q even for g ~ kr and ¢ ~ 1/d for
actual semiconductor parameters (see estimates below). Since the inequalities
ken(g9)d € 1,g,c < ¢, and g, < kp are compatible, that means that the expression
for the dispersion relation (7) holds in the region ¢ ~ kp, the electrostatic potential
is not essential and the splitting of the confined acoustical mode has maximum at
¢=2kp. At g¢> 2kp the magnitude of P(g)q ,which determines w, is proportional
to ¢~1, so the splitting decreases with increasing q. The behavior of w(g) for the

confined acoustical mode is shown in figure l.a. '
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Phas? velocity w/ge; of confined modes as a function of wave vector ¢ at different temperatures
for a) single electron sheet, b) two electron sheets. Insets show the form of solutions.

It is known that not only the heterostructures with one electron sheet but many
layered system can be fabricated %. Distance between these electron sheets 2L can
be varied artificially. If L is of the order of the characteristic scale rcc',f, the effect
of interaction of these sheets is appears. On the example of two electron sheets
structure, we show that the interaction of these sheets leads to a splitting out of
additional acoustic waves characterized by other features. Namely, the case shows
two sorts of confined modes (symmetric and antisymmetric). The symmetrical
one although differs from the single electron - slteet solutions by magnitude of
splitting, degree of confinement etc.,but shows the same physical trends. However,
antisymmetrical modes are considerably different at small x and ¢. This solution
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is splited out of the bulk one after a finite value of ¢ = qc Since Kantisym 1S
" small for ¢ ~ q., we can find the equation for g¢.:

I_ . _BP(g;,T) (1 + coth . L)

L ’(Qc) A+2u 2g.(1 + cothq.L) + 4me2P(q;, T)/e0”

(10)
L .
This equation has always single root. Near ¢, dispersion relation for the antisym- ‘
metrical modes is

Rl . 2
w? =¢j q2 (l - (—-M(q - Qc)z) y g4 > Qe (11)
Ci‘qa;

Analysis shows that the splitting between bulk phonons and antisymmetrical
confined modes increases when g increases up to 2kp, then the® splitting falls
down. The antisymmetrical branch is always between the bulk phonons and the
symmetrical modes. The phonon spectrum for two electron sheet is illustrated by
fig.1,b ‘

In conclusion, we have showed that the electron sheet, in particular 2D elegtron
gas, localizes the acoustic modes due to only electron—phonon interaction even at

uniform lattice characteristics. The confined modes propagate along the sheet and
decay far away from it. The acoustic waves are accompanied with the charge
waves. The splitting of the modes out the bulk phonons increases when wave
vector ¢ increases and reaches a maximum at ¢ = 2kp, then the splitted modes
are converged to the bulk phonons with increasing ¢q. Additional features of the
confined modes arise for the case of several electron sheets.

From the above results it follows that the confinement effect can be 51gmﬁcant
for the media with strong electron—phonon interaction, large effective mass of
electrons, high concentration and low temperatuze.

We use the following typical parameters of semiconductors to estimate the order
of value of the confinement effect: A+ 2u =102 gr/cmsec?, b=15 eV, m=0.5mg
(p—material), €9 = 15. Then for typical electron concentration:for &— —~doping layer
n=6,7.1012 ecm~? (kp =6,488.10° cm~? %), we find the results ,presented on fig.1
a,b. For semiconductors with large. dielectric constant (IV-VI compounds) the
splitting increases as much as 3 times.

Thus, the studied confinement effect of the acoustical modes by the electron
sheet can be considerable. It may be investigated - by acoustical measurements
-of the semiconductors with 6—dopmg The scattering on the confined modes can
affect the electron transport in these materials.
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