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We suggest that the mass hierarchy is first generated in a sector of heavy
isosinglet fermions due to radiative effects and then projected in the inverted way
to the usual quarks by means of a universal seesaw. The simple left-right symmetric
gauge model is presented with the P- and CP-parities and the exact isotopical
symmetry which are softly (or spontaneously) broken in the Higgs potential. This
approach naturally explains the observed pattern of quark masses and mixing,
providing the quantitatively correct formula for the Cabibbo angle. Top quark is
predicted to be in the 90 — 150 GeV range.

Recently !, a new approach to the fermion mass problem was suggested: the

mass hierarchy is radiatively generated in a hidden sector of the hypothetical
heavy fermions and then transfered to the visible quarks and leptons by means of
universal seesaw mechanism 2. Providing a qualitatively correct picture of quark
masses and mixing, this approach solves many principal problems of previous
models ®* of radiative mass generation. In particular, the correct value of the
Cabbibo angle can be accomodated without trouble for the perturbative expansion
and, thus, for the idea of radiative mass generation itself, which was the generic
problem 5 of previous approaches. Moreover, within the seesaw approach the
effective low energy theory, after integrating out of the heavy sector, is simply
the standard model with definite Yukawa couplings 2. Thus, the dangerous flavour
changing phenomena, characteristic * for the direct models of radietive mass
generation, are naturally suppressed.

The key idea of the model ! is to suppose the existence of weak isosinglet heavy
fermions (Q-fermions) in one-to-one correspondence with the light ones. The model
! has a field content such that only one family (namely the first) of Q-fermions
becomes massive at the tree level, whereas the 2"¢ family at the l-loop level and
the 3% only at 2 loops. Due to seesaw features 2> the mass of any usual quark
or lepton appears to be inversely proportional to the mass of its heavy partner,
so that the mass hierarchy between the families of light fermions is inverted with
respect to the hierarchy of Q-fermion families. This pattern is attractive for the
reason that we experimentaly observe the small mass splitting within the lightest -
quark family (v and d) and then increasing splitting from family to family, with
the up-quark masses growing faster: my/mg < mc/m, < my/my. The latter fact
can be related with the difference of the perturbation theory expansion parameters
in the up and down quark sectors.

In the present letter we show, that the simplest and most economical version
of the model ! provides a predictive ansatz for the quark mass matrices. We
assume that the “isotopical” discrete symmetry Iyp between up and down quark
sectors, as well as the left-right symmetry Prr and CP-invariance, is violated
only in the loop expansion, due to soft (or spontaneous) breaking in the Higgs

445



potential. The appearance of both the mass splitting within the lightest family
(ma/my = 1.5 —2) and the large compared to other mixing angles value of the
Cabibbo angle (V,, ~ 0.22) is related to the features of seesaw ”projection”,
without the trouble for the perturbation theory. The model leads to certain
predictions for the quark mass and mixing pattern, which we will discuss below.

Let us consider the simple left-right symmetric model based on the gauge group
GLr=SU(2),@SU(Qr@U(l), @ U()r ® U(1)5_1, suggested in 1. The left-
and right-handed components of usual quarks g¢; = (u;,d;) and their heavy partners
Qi =U;, D; are taken in the following representations:

qri(Ir =1/2, B~ L=1/3), qri(Ir=1/2, B—-L=1/3)
UL,'(YL=1, B—f/=1/3), UR,’(YR=1, B~E=1/3)
DL,'(YL=—1, B—E=1/3), DR.'(YR=—1, B—E=l/3) (1)

where i=1,2,3 is the family index (the indices of the colour SU(3). are omitted).!)
Only the nonzero quantum numbers are shown in the brackets: I r are the
SU(2)L,r weak isospins and Y r are the U(l)r r hypercharges. Let us introduce
also one additional family of fermions with B—L=1/3 and following hyprecharges:

pr(Yr=-1/2, Yr=3/2), + pr(Yr=3/2, Yr=-1/2)
np(Ye =1/2, Ygp=-3/2), nr(Ys =-3/2, Yr=1/2) 2)
The scalar sector of the theory consists of |
Hi(IL=1/2, Ya=1), | Hr(Ir=1/2, Yp=1)"
Tur(Yr=-2, B-L=-2/3), T.r(Yr=—-2, B-IL=-2/3)
Tu(Yz =2, B-L=-2/3), Tir(Yr=2, B-L=-2/3) (3

®(YL=2,Yr=-2), o(Y1=1/2,Yr=-1/2), Q(Y1,Yr=1/2, B—L=-1)

where T-scalars are supposed to be colour triplets. Let us impose also CP, Prp
and Iyp discrete symmetries. Prg, ’ which is essentialy parity, and CP act in
the usual way. The isotopical "up-down” symmetry Iyp is defined by

S
Urr DL, prr<nLr,  Hpre Hpr=inHj g,

TZ‘,R A Tg,Rv ¢ - 27, VR Aﬁ,R A _AZ,R (4)

where A;,R are the gauge bosons of U(l)p,r. Then the most general Yukawa
couplings consistent with gauge invariance, Iyp, Prg and CP are

Ly =T4;(qri Urj H + @i Drj Hr) + (L < R) + h.c.

Ly= )\,'_.,'(UL,'CUL]'T“L + DL.'CDLJ'TdL) + (L — R) + h.c.
L3 = h(prpr®" + irnr®) + hi(ULipre” + Drinre) + (L < R) + h.c. (%)

) ")The inclusion of leptons in this model is strightforward and will be presented elsewhere. In fact
U(1)p_y can be unified with SU(3). within Pati-Salam® type 3U(4). The U(1)L, @ U(1)r ® Iyp
part can also be enlarged to SU(2)} ® SU (2)g» in which case the isotopical symmetry is obviously

continuous. '
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where C is the charge conjugation matrix. The coupling constants hyhiy Xij, Tii(3,5 =
1,2,3) are real due to CP-invariance (J\;; is antisymmetric, A =-J, since the T-
scalars are colour triplets). In what. follows we do not make any particular
assumption on their structure. We only suppose that they are typically O(1), as
well as the gauge coupling constants. Without loss of generality, by suitable redef-
inition of the fermion basis we can always take hj, h3 =0, A13=0, I'12,T'13,T23 =0,
which we use in the following.

Let us suppose that the discrete symmetries CP, PLr and Iyp are softly broken
only by the bilinear and trilinear terms in the Higgs potential 2) The latter are
the following ’

AuT;LTuRQ -+ AdTgLTdRQ* + h.c. (6)

where the coupling constants A, 4 are generaly complex, violating thereby both
CP and Prp invariances.

The VEVs (®) =vs and (p) =v,, vs > v,, break U(l)r ® U(1)r down to
U()L+r (the VEV of Q then breaks U(1)p;r® U(1)5_g to the usual U(l)p_p :
B—L=Y,+Ypr+B—L ). The fermions p and n become massive, M, = M,, = hvg,
and the Q-fermions of the first family, U; and D; get masses M = h%vi/hv‘; due
to their seesaw mixing with the former ones (interactions L3 in (§)). At the same
time the coloured scalars T,; — Tyr and Tyr — Tyr get mixed due to interaction
terms (6). At this point the radiative mass generation proceeds following the chain
U, — Uy — Us, Dy — Dy -+ D3 and the Q-fermion mass matrices generated from
the loop corrections due to Ly in (5) can be presented in the following form:

Myp=M(P, e ™wig, g AP+ Cu,dfid N PA 4 (7)

where P; = diag(1,0,0) is a l-dimensional projector and wya =—argAy 4. The loop
expansion fa-tors are

1
£ = S?sin2aqlan, Ry = (M{/MI)? (8)

where M{,M? are the eigenvalues of mass matrices of the scalars Typ — Tyr,
¢ =u,d, and a4 are the corresponding mixing angles. In a ”"reasonable” range of
parameters (1 < R < 10) the 2-loop factor C(R)=C(1/R) is practicaly constant:*
Cy,a~ 0.65. Eq.(8) is valid in the natural regime M < M], M? < M,

Apart from small (~ sf‘yd) 1-3 mixing, the matrices My p are diagonal and the
mass hierarchy between three families of Q-fermions is given by 1:z7ley q: 5121, &
where we denote z = v/Claa/d1z and ey 4 = VCAizd2a€ua ~ 1072 — 1071 are
the effective perturbative expansion parameters for the up and down sectors,
respectively.

The VEVs (Hp)=(0,vz) and (Hg)=(0,9r), wr>vr=(2vV2Gr) Y?x175
GeV, break the intermediate SU(2), ® SU(2)r @ U(l)g-r symmetry down to
U(l)ern. Then the ordinary quarks q = u,d acquire masses due to their seesaw
mixing with heavy fermions Q =U, D (interactions L; in eq.(5)). The whole mass
matrix written in the block form is

won(t, 1) (3),

2)Actualy, this symmetries can be spontaneously broken at the price of introduction of Prp —
and Iyyp—odd real scalars '.
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for up-type quarks and analagously for the down-type quarks. When My p >
VR, VL, the resulting mass matrix for the light states is given by seesaw formula
Mu d

1

i;ht =‘UL’URFMJ'1DF. (10)

Substituting here eq.(7) we find in the explicit form

m €7 211721 ¥
Miigne = 7 | €;mumm eze'yd; + €29, eze 33732 + 2721731 (11)
Ey11731 ez ynavas + 2 v¥s | +ewe’qd, + 6273,

where m =T33v,vrRM ™!, 4;; =T;;/T'33 and Y31 =731 + VCz™1; €=Eydy W=wyq for
the up and down quarks, respectively.

It is obvious from (11) that e, < ¢4 € 1. The up quark mass matrix Mo is

almost diagonal. Neglecting ~ ¢, corrections we have m, =my?;, m, = zmyZ,e;!

and m; = me; 2. Thereby, the quark mixing pattern is determined essentialy by
the down quark mass matrix M{fght, where m; zmsgz. The contributions to the
parameters of the CKM matrix from Mione are typically suppressed by the factor

€u/€q and we neglect them. After some algebra one can obtain:

m .
Vae m0 o2 1 = D is | (12)
m, mqg
Y31 7o m m m,
Voo DUy, o T (( [Ty, 20T ) (13)
Y11 ™ My mq Y22 My

where § = —wq+arg(ze'“vZ, + c472;) & ~wa+arg(l +€*“¢) is a CP-violating phase.
within uncertain (but supposed to be ~ 1) numerical factors the formulas (13)
fit the experimental values of V,; and V. (notice that for I';; = 0 one has
Vaus/Ves = my [y/mam, = 0.11 — 0.15). Their smallness implies that corresponding
mixings cannot affect significantly the diagonal elements of M{fght. As for 1-2
mixing, the situation is different. The mass splitting between u and d quarks
requires some spread in Yukawa coupling constants (i.e. fluctuations around 1
within factor 2 — 3), which is perfectly acceptable: T'3/T11 ~ /mgm,/m, =7-9,
I'21/T22 & y/2/cq etc. This in turn automatically leads to the Cabibbo angle in
the needed range. The comparison of (12) with experimental value V,, ~ 0.22
requires the large CP-phase, § ~ 1, in accord with the recent data.
From the mass matrices (11) one can also derive the relations

Eu MMy myp

Ei=77l1;mc = mt ) (14)

which allow to calculate the Top quark mass. The large value of the latter
requires that one has to account also for the "seesaw” corrections® to the formula
(10), which implies for the physical top quark mass

0 \? -1/2
1+< : ) 15
Fazvg (1)
where m) is ”would be” physical mass, calculated from eq.(14). Obviously,
the analogous corrections are negligible for other quark masses since we demand

* 0
1
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all I’s to be ~ 1. On the other hand, from (11) one can easily derive that
I'21/Tas ~ e‘;l\/mdm, [mymy > 0.17551. In order to be consistent with perturbation
theory (i.e. to avoide the appearance of Landau poles below the scale M,) one has
to assume that all Yukawa coupling constants, including I';; and M’s are less than
2, which implies that T's3 < 1. Consequently, using the known values® of u,d, s, ¢
and b quarks, from (14) and (15) we obtain m} =50—150 GeV. The large spread
here is related mainly with the uncertainties in the light quark masses. Obviously,
the lower limit is not interesting in view of the recent CDF limit m} > 90 GeV.
One can even ‘turn the logic around and say that the experimental lower bound
on the top quark mass favours the lower values of mq/m, and m, from those
allowed in%.

Last but not least we wish to remark that in our approach the strong
CP-problem can be automaticaly solved without axion. Owing to P and/or CP-
invariances the initial ©gcp =0 and so called Ogrp = ArgDetM arising from
the whole mass matrix M of all fermions g, @ and p,n is also vanishing at
tree level due W seesaw pattern'®. The loop corrections can provide, however,
© =10"° - 10", which makes this scenario in principle accessible to the search
of the DEMON - dipole electric moment of neutron.
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