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Universal formulae for total power losses by a bounded media due to
the emission of electromagnetic (both transverse and longitudinal) waves in the
regimes of nonlocal (non-diffusive) heat transport are proposed, which, in particu-
lar, generalize Trubnikov’s formula for synchrotron losses to the case of arbitrary
emission/absorption process and inhomogeneous non—stationary plasma. Their deriva-
tion is based on a non-diffusion method which generalizes the “escape probability .
method* in the theory of radiative transfer in resonance atomic lines (RTRAL).
The results suggest a qualitative model for the global heat transport in a tokamak.

LIntroduction. The heat transport by  electromagnetic (EM) waves, both
transverse (i.e. photons) and longitudinal waves (i.e. plasmons), in the wide range
of parameters (which includes, in particular, magnetically confined thermonuclear
plasmas) is characterized by its nonlocal (non-diffusive) nature which manifests
itself in nonlocal correlation of plasma temperatures and, correspondingly, non-
diffusive law of heat propagation. Mathematically, the non-diffusive nature is
expressed by the fact that the original equation for heat transfer which is, in
general, an integral equation in space variables, cannot always be reduced to a
differential diffusion-type equation in those variables. Such a reduction leads to an
infinite diffusion coeflicient in case of unbounded media or medium-size—dependent
diffusion coefficient in case of bounded media, so that the very concept of diffusion
coeflicient appears to be meaningless.

2.Universal formula for total energy losses. Let us consider the transfer of
EM energy which is described by the intensity J(¢,7,t), differential with respect
to EM wave (photon or plasmon) parameters ¢,
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¢ ={w,7, ¢} (1)

where w and k are the frequency and wave vector respectively, 7 = k /k , parameter
¢ describes polarization state of the wave. Space-time evolution of the intensity
is guided by equation of the well-known form:
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where k(¢,7,t) is absorption coefficient, Q(¢,7,t) is the source function, N, is
ray refractive index, v, and 7, are the group velocity and its direction. In a
medium with dispersion the substitution of the dependence k =k(w,7,() from the
dispersion relation is implied.

In case of radiative transfer by emission/absorption of EM waves by plasma
electrons, the quantities @ and x contain averaging over electron velocity distri-
bution (EVD). Therefore the source function @ may implicitly depend on the
intensity 'J via corresponding distortions of the EVD, caused by radiative transfer.
If these distortions are small then Q doesn’t depend on J, and eq.(2) appears to
be a closed equation for energy carriers. The multiple reflection at the medium
boundary (e.g., tokamak wall) prevents from straightforward use of the analytic
solution of eq.(2) in the form of the integral over ray path.

Another example of the reduction of transport problem to a closed equati»i is
the Biberman-Holstein equation for accumulators of energy, namely excited atoms,
in the theory of radiative transfer in resonance atomic lines (RTRAL) in gases
and plasmas in case of the so—called complete redistribution in photon frequencies
in an individnal act of photon’s scattering by medium’s atom (approximation of
complete r:distribution is valid for a wide range of astrophysical and laboratory
plasmas !).

In both above-mentioned cases the energy transport appears to be characterized
by the following general features.

(*) The dominant contribution to energy loss stems from those long-free-path
energy carriers (photons or plasmons) whose long flights are of medium’s size Lo
in length ,or greater, Lo/(l — R), for the case of reflection at boundaries, R is
reflection coefficient, (for the RTRAL, these are the photons in the so-called line
wings).

(**) Each of the variables of the total phase space {I'} = {¢,7} manifests
one of two limiting forms of its evolution (“redistribution®) along the trajectory
of energy carrier from its birth to its death (by convertion into medium’s heat);
either no redistribution (“independent“ variables) in which case for this variable
the energy transport takes place independently (e.g., the variable w for the case
of absorption/emission by free electrons with fixed velocity distribution and the
variable 7 for the case of bounded electrons, see below) or complete redistribution
in which case for each of those variables the transport equation may be properly
averaged, according to actual redistribution law.

The whole st of first-type variables we shall denote as I'j,q and the second-
type, Tcrq. The properties (*) and (**) enable us to obtain finally the following
general result for total power losses:

dE -
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Here, vgye is the rate of such an absorption of EM energy by the medium, which
converts transported EM energy into medium’s heat (temperature), (this is the
quenching of atom excitation by, e.g., medium particle’s impact for the RTRAL,
and the absorption of the photon(plasmon) by plasma electrons for the radiative
transfer in continuous spectrum), and v, is the rate of free escape of EM energy
out of the medium. Both quantities Vque and ve,. are averaged over I'c;q according
to corresponding redistribution laws.

In case of the RTRAL, we have [,4=7 and v.,. =< T(*) > /traq, where
< T(7) > is Holstein function averaged over the angles of photon’s escape, t,4q
is spontaneous emission lifetime for excited atom, and we thus arrive at the
well-known result of the RTRAL theory (for the accuracy of this result see the

survey ! and references therein).

It should be noted that the phenomenon of nonlocal, non-diffusive transport
has been revealed and thoroughly investigated just in the RTRAL theory in the
late forties and early fifties in the pioneer works by Biberman, Holstein and
Sobolev. The derivation of eq.(3)-like formula and its further advances are known
in literature as “escape probability method“ (see, e.g.?). Therefore formula (3)
may be interpreted as a generalization of this methods to the case of heat transport
via emission/absorption of (transverse and longitudinal) EM waves by free electrons
with fixed velocity distribution (for comparison of eq.(3) with numerical calculations
for heat transport by electron cyclotron radiation see Sec.3.).

Note that formula (3) covers both limiting regimes of energy loss, namely
purely volumetric loss due to free escape from the whole phase space (une & Vege)
and purely surface loss (Vque > Vesc). In the latter case, the intensity of escaped
EM field is close to the equilibrium Planck distribution with some effective, space—
averaged temperature, the heat transport inside the medium being characterized
in corresponding domain of phase space by diffusion-type regime of radiative

~ thermoconduction. Nevertheless,the total losses in eq.(3) are determined dominantly

“"by those part of the total phase space T in which the process of energy transport
has essentially nonmlocal character, namely the non-diffusion regime of free escape.
The latter statement just constitutes the essence of a generalazed escape probability
(GEP) method which enables us to obtain eq.(3) within the framework of principles
(*) and (**).

3. Heat transport by plasma waves. Contrary to the RTRAL theory,
nonlocal character of the transport by plasma longitudinal waves and its possible
role have been realized much later starting from the paper by Rosenbluth and
Liu 3. For the case of transport by transverse waves (i.e. conventional electron
cyclotron radiation) in inhomogeneous plasma, the concept of non-diffusive transport
has been fruitfully exploited by Tamor *%.

The straightforward analogy between heat transport by plasma waves and the .
RTRAL was traced in ° where the non-diffusive law of heat propagation by
Bernstein modes was also obtained (approximately ¢ oc r contrary to the standard
diffusion law t ocr? ).

The existing analytic descriptions have the character of the fit of numerical
results and pertain to (a) specific mechanism of emission, namely cyclotron ra-
diation, and (b) specific profiles of temperature and density: homogeneous, the
well-known Trubnikov’s formula 6, or tokamak-like, formula 7. The required ana-
lytic description may be obtained from our general result (3) for a specific case

. of tokamak geometry under following, usually satisfied conditions, namely not too
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large aspect ratio, non—circular (in particular, elongated) cross—section and multiple
reflection at plasma boundaries (for transverse waves the latter is assured by highly
reflecting tokamak walls, (1 — R) < 0.1, and for longitudinal waves it depends on
edge plasma parameters). Neglecting the mixing of different modes in reflections
at the boundaries, we have Tj,q4 = {w,(} and eq.(3) reduces to the form:

dE _ [dV[da, Q@7 _ __ [dV [d Q7
dt XC: fd“’ L+ Tess e raq, [(7,d5) (1- R(4,5.)) @

where T.p(w,() = Vque/Vese is the effective (dimensionless) optical length which
describes the trapping (or, equivalently, imprisonment, according to RTRAL theory
language) of plasmons (photons). Here V and S, are plasma volume and surface,
respectively, and R(¢,S,) describes the dependence of reflection coefficient on wave
parameters (first of all, frequency). The comparison of formula (4) with the results
of numerical calculations, in particular, for homogeneous 6 and inhomogeneous *
cases, and with formula 7 (and formula © in the region of successful approximation
of numerical results, see %8 ) shows good agreement (to an accuracy of about
30%) in the regions of applicability of these results. The GEP method allows
also to obtain a universal analytic description for spatial profile of wave energy
balance and for the case of arbitrary degree of mixing of different waves at plasma
boundaries, both for stationary and non-stationary cases. Thus, the non-stationary
counterpart of eq.(4) has the form:

B3 fao [ fav [ann e e[~ [ L (1)
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where t.; is the characteristic time of wave irapping exclusively due to reflecting..

by the boundaries,

de fdﬂn v.g‘l(d:,i",t)
fdnﬂ f(ﬁ’ d§s) (1 - R(¢’SS))’

(eq. (5) assumes the smallness of retardation effects).

ters(t) =

(6)

The formulae (4) and (5) generalize Trubnikov’s formula® for synchrotron

losses to the case of (a) arbitrary elementary process of radiation emission by
high-temperature plasma with highly reflecting walls and fixed (e.g., maxweihan)
velocity distribution and (b) inhomogeneous and non-stationary plasma parameters
(density, temperature, magnetic fieid).

4. On the global heat transport in a tokamak. The application of the
GEP concept (items (*) and (**) of Sec.(2)) to energy transport by plasma waves
suggests a qualitative model for the global heat transport in a tokamak, which
expoits the fact of a strong coupling of essentially nonlocal and local characteristics
of a plasma in egs. (4) and (5) for total power losses, namely, the coupling of
space-averaged emission/absorption coefficients and the coefficient for the reflection
of plasma waves at plasma boundary. In this model, the global energy transport is
conducted by the long-frec-path quanta of longitudinal EM waves (plasmons) which
are responsible for such a strong coupling due to their multiple reflection at plasma
boundary and appear to be the main carriers of energy whereas the particles are
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invariably the main accumulators of plasma energy. Such a model suggests the
possibility of an effective control of plasma global (nonlocal) parameters via a
proper control of the reflection of plasma waves in edge plasma. From this
viewpoint, the L-H transition may appear to be stimulated by a sharp change
of the reflection coefficient due to, e.g., increased gradient of poloidal rotation of
tokamak plasma or increased stability of magnetic surfaces which are responsible
for the reflection of most significant energy carriers.
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