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Renormalization group equations and a phase diagram are derived for a system
of two chains with a single-clectron hopping between chains in order to correct
the results of a recent paper by F. V. Kusmartsev, A. Luther, and A. Nersesyan,
Pis'ma v Zh. Exp. Teor. Fiz. 55, 692 (1992) [JETP Lett. 55, 724 (1992)].

In a recent paper !, the effect of a single-electron hopping (SEH) between

chains in a system of two chains was studied by means of the bosonization
technique and the Coulomb gas description. Possible phase transitions of the
Berezinskii-Kosterlitz-Thouless type, which result in generation of pair hoppings
between the chains, were considered. Unfortunately, despite the spirit of the paper
is correct, Eq. (4) turns out to be incomplete and leads to a wrong phase diagram
shown in Fig.

EHPH SEH EEPH
(DwW) (FL) (sc)
. A
- 2

|
|
|
1
1

S

R 2+V3 142 1 1+V2 243 K

RG dimensions of t? (curve A): 4— K — K; J (curve B): 2 - 2K; and J (curve C): 2—2K as
functions of K (the right horizontal semi-axis) and K = 1/K (the left horizomtal semi-axis). The
difference in a physical behavior in the three regions, scparated by the dashed lines and labeled
by the abbreviations, is explained in the text

The considered problem is the old one which recently attracted attention again
The generation of the pair hoppings in a gapless case was discovered for the

first time in Ref. 3 via a perturbational theory. Later, these results were confirmed
~
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by a renormalization group (RG) approach *. The aim of the present paper is to
correct the RG equation (4) and the phase diagram of Ref. ! and achieve in this
way an agreement with the previously known results 3*.

Due to the generation of the pair-hopping terms, the action of the model,

o [arie [0 + @87+ P cos Lydeos 3],
So /drd:c [2((3,.<I>) +(8:9)°) + ——cos 21@ cos 27<I> ) 1)
has to supplemented with the following term:

S = /drd:c [27 cosv® + 27 cos 7] . (2)
The notation of Ref. ! is used everywhere. In the fermion representation, the

coefficients J and J in Eq. (2) are the amplitudes of the electron-electron (EEPH)
and the electron-hole pair hoppings (EHPH), respectively:

Hy= (2m)2/dz(qu;jlw;jlwz,_lwl,_l+fw;1w;_1w2,1w1,_1 +he).  {3)

The RG equations for the considered system can be derived using the approach
of Ref. 8

dt; /dl=(2-0.5K - 0.5K)t,, (4)
’dJ/dl =2(1 — K)J + (K — K)t} /27vF, (5)
dJ/dl=2(1 — K)J + (K — K)t% /2xvF, (6)

t1(0)=to, J(0)=J(0)=0. (7~

The second terms in the r.h.s. of Eq. (5) and (6) reflect the generation of the
pair hopping terms by combining the SEH terms. The first terms in the. r.h.s. of
Eq. (4) - (6) reflect the RG dimensions of the appropriate operators. They are
plotted in Fig. The renormalization of K = I/K and the generation of irrelevant
terms are neglected. The value K =1 corresponds to the case of nun-interacting
electrons. In the Hubbard model, there are certain limitations on the range of
possible values of K, however, these limitations do not apply to a generic model,
like an extended Hubbard model ®. Eq. (4) - (6) are essentially the same as Eq.
(84) of Ref. %, although there are some differences in details.

Eq. (4) — (6) with the initial conditions (7) have the following solution (see
Eq. (87) of Ref. %):-

tL = toe(2—0.5K—0.5i()l’ (8)

- t3 RK-K _ (6(4—1(—1'()1 _ e2(1—f{)1) ) (9)
2rvp (2- K-K)

The formula for J can be obtained from Eq. (9) by exchanging K and K.
Eq. (8) shows that the SEH is relevant (increases upon renormalization) if the
condition
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2-05K-05K>0 & 2-vV3<K<2++3 (10)

is fulfilled. Considering the behavior of the EEPH amplitude J, the two different
regimes can be distinguished. If

4-K-K>2-28 & K<1+vV2, (11)

then the first term in Eq. (9) dominates, and J(I) grows essentially as t?(I). If
the opposite condition

KE>1+v2 (12)

is fulfilled, then the second term in Eq. (9) dominates, and J(I) grows faster than
t2(1). Analogously, the EHPH amplitude J grows faster than t(I) if the condition

4_K-K<2-2K & K>1+V2 (13)

is fulfilled. The mutual position of regions (10) — (13) is illustrated in Fig.

Upon renormalization, an amplitude t(!), aJ(l), or aJ(l) may become of the
order of the Fermi energy er ~ vp/a, and a crossover to a different physical
regime will take place at the corresponding temperature T=¢epe'. In the region,
labeled as SEH in Fig., the single-electron hopping amplitude ¢ becomes of the
order of ep first of all. In the case of two chains, the characteristic temperature
represents a renormalized energy splitting of the two chains. In the case of an
infinite array of chains, this temperature marks a crossover from a 1D Luttinger
liquid to a 2D or 3D standard Fermi liquid (FL). There may be phase transitions
to ordered states at lower temperatures.

On the other hand, in the region marked as EEPH, the electron-electron pair
hopping amplitade aJ(!) becomes of the order of e when t(I) is still small.
In the case of two chains, the superconducting phases of the two chains become
strongly bound below the corresponding temperature. In the case of an infinite
array of chains, a phase transition to a superconducting (SC) state takes place
at this temperature. It is essential that in the EEPH region, unlike in the SEH
region, the phase transition takes place directly from the Luttinger liquid regime
without an intermediate FL regime, and the transition is driven by the pair
interchain coupling. This scenario is reminiscent of one suggested in Ref. 7 for
the high 7, superconductors. The same consideration applies to the EHPH region
in Fig. where a phase transition to a density-wave (DW) state is expected.

The boundaries between the single-electron and the pair hopping regimes (Eq.
(12) and (13)) were found for the first time in Ref. 3. In contradiction with the
text of their paper, the authors of Ref. ! neglect Eq. (5) and (6), thus their
phase diagram reflects only condition (10). For this reason, they essentially repeat
a wrong conclusion, made in Ref. & that a Luttinger liquid regime can exist at .
zero temperature, '

The author thanks E. Abrahams for the support of this work via the NSF
Grant No. DMR 89-06958 and the Aspen Center for Physics for the opportunity
to have discussions with A. Luther.
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