A PATH-INTEGRAL QUANTIZATION OF THE STRAIGHT-LINE STRING

A. Yu. Dubin

Institute of Theoretical and Experimental Physics
117259, Moscow, Russia

Submitted 27 October 1992

A path-integral quantization of the relativistic straight-line string is proposed. In an explicitly covariant form starting with the initial four-dimentional dynamics of the relative coordinate τ_{μ} the three-dimentional one is derived. A connection between constraints appearing in the canonical formalism and the path integral quantization is discussed.

- 1. Introduction. Various kinds of string-like models have been employed to describe the world of hadrons ¹. The massless relativistic straight-line string is usually considered as the simplest dynamical basis of the model of hadrons. This model has been quantized in the canonical quantization formalism ². Dynamics of quark and gluon fields leads us to the study of dynamics of the relativistic string with masses at the ends ³, in which the quarks carry a finite fraction of the energy-momentum of the hadron. But even the simplest version of the straight-line string with masses at the ends cannot be made tractable in the canonical quantization formalism ⁴. In this paper we propose a path-integral Lorentz-covariant approach to the quantization of the massless relativistic straight-line string which can be generalized to the case of the straight-line string with masses at the ends ⁶.
- 2. Gaussian representation for the action of the straight-line string. The standard form of the action of the straight-line string in Euclidean space is

$$S = \sigma_0 \int_0^1 d\gamma \int_0^1 d\beta [\dot{w}^2 \cdot w'^2 - (\dot{w} \cdot w')]^{1/2}$$
 (1)

where $w_{\mu}(\gamma,\beta)$ are the coordinates of the string world surface

$$w_{\mu}(\gamma,\beta) = z_{\mu}(\gamma) \cdot \beta + \bar{z}_{\mu}(\gamma) \cdot (1-\beta) \tag{2}$$

and $z_{\mu}(\gamma)$, $\bar{z}_{\mu}(\gamma)$ are the coordinates of the ends of the string. The dot and the prime stand for the derivatives over γ and β parameters. Therefore we are to consider and make it tractable the following functional integral in the Euclidean space

$$G = \int Dz_{\mu}(\gamma)D\bar{z}_{\mu}(\gamma)\exp[-S]. \tag{3}$$

The action is invariant under the reparametrization

$$\gamma \to f(\gamma, \beta), \quad w_{\mu}(\gamma, \beta) \to w_{\mu}(f(\gamma, \beta), \beta)$$
 (4)

with the function $f(\gamma, \beta)$ satisfying the conditions

$$f(0,\beta) = 0, f(1,\beta) = 1, \frac{\partial f(\gamma,\beta)}{\partial \gamma} > 0$$
 (5)

It is convenient to introduce a "center of mass" coordinate $R_{\mu}(\gamma)$ and a relative coordinate $r_{\mu}(\gamma)$ as follows ³

$$R_{\mu}(\gamma) = \frac{1}{2}(\bar{z}_{\mu}(\gamma) + z_{\mu}(\gamma)) , r_{\mu}(\gamma) = z_{\mu}(\gamma) - \bar{z}_{\mu}(\gamma)$$
 (6)

so that

$$w_{\mu} = R_{\mu} + (\beta - 1/2) \cdot r_{\mu}. \tag{7}$$

The boundary conditions can be imposed in the Lorentz-invariant way

$$R_{\mu}(1) - R_{\mu}(0) = T \cdot u_{\mu}, u_{\mu} \cdot u^{\mu} = 1 \tag{8}$$

and $r_{\mu}(0), r_{\mu}(1)$ are also fixed.

To develop a procedure to evaluate path-integral (3) we use the auxiliary fields formalism, as is usually done in the string theory ⁵.

Let us rewrite (3) as

$$G = \int Dr \ DR \ Dh_{ab} \exp[-\sigma_0 \int \sqrt{h} d^2 \xi] \delta(\partial_a w_\mu \partial_b w^\mu - h_{ab}(\xi)) =$$

$$= \int Dr \ DR \ Dh_{ab} \int_{-i\infty}^{+i\infty} D\lambda^{ab} \exp[-\sigma_0 \int \sqrt{h} d^2 \xi] \times$$

$$\times \exp[+\int \sqrt{h} \lambda^{ab} h_{ab} d^2 \xi] \exp[-\int \sqrt{h} \lambda^{ab} \partial_a w_\mu \partial_b w^\mu d^2 \xi]$$
(9)

where $d^2\xi = d\gamma d\beta$, $\xi_1 = \gamma$, $\xi_2 = \beta$, $h \equiv deth$.

It is convenient to decompose 5

$$\lambda^{ab}(\xi) = \alpha(\xi)h^{ab}(\xi) + f^{ab}(\xi) \tag{10}$$

with

$$f^{ab}h_{ab} = 0, h^{ab} \equiv (h^{-1})^{ab}. \tag{11}$$

In a similar way as it has been done in the case of Nambu-Goto string. ⁵ we can prove that in the continuum limit $\alpha(\xi)$ and $f^{ab}(\xi)$ can be replaced by their mean values

$$<\alpha(\xi)> \to \bar{\alpha}, < f^{ab}(\xi)> \to 0.$$
 (12)

Equation (12) reflects the fact, that $\alpha(\xi)$ is a scalar, while $f^{ab}(\xi)$ is a traceless tenzor.

Using (12) we obtain the following expression for G:

$$G = \int Dr DR Dh_{ab} \exp[-(\sigma_0 - 2\bar{\alpha}) \int \sqrt{h} d^2 \xi] \exp[-\bar{\alpha} \int \sqrt{h} h^{ab} \partial_a w_\mu \partial_b w^\mu d^2 \xi]$$
(13)

with the new action which is quadratic in w_{μ} and contains the new auxiliary fields h_{ab} .

3. Integration over the auxiliary fields. The invariance (4) makes it convenient to introduce the new variables $\tilde{\nu}(\beta)$, $f(\xi)$, $\eta(\xi)$. Separating out the collective mode $\tilde{\nu}(\beta)$ and the field $f(\gamma,\beta)$, satisfying conditions (5), we have

$$\hbar \equiv \frac{h}{h_{22}^2} = (T\sigma\tilde{\nu}(\beta))^2 (\frac{\partial f(\gamma,\beta)}{\partial \gamma})^2. \tag{14}$$

And making a simple rescaling of h_{12} we also introduce the variable $\eta(\gamma, \beta)$ instead of h_{12}

$$\hbar_{12} \equiv \frac{h_{12}}{h_{22}} = \left(\frac{\partial f(\gamma, \beta)}{\partial \gamma}\right) (T\eta(\gamma, \beta)) \tag{15}$$

where T enters boundary condition (8). Taking into account the fact, that

$$Dh_{11} Dh_{22} Dh_{12} = D\hbar Dh_{12} h_{22}^2 Dh_{22}$$
 (16)

and using the well known in the string theory formula 5

$$D\hbar \sim \exp\left[-\frac{\mathrm{const}}{\epsilon} \int \sqrt{h} d^2 \xi\right] D\tilde{\nu}(\beta) Df(\gamma, \beta)$$
 (17)

where $1/\epsilon \sim \Lambda$ is the ultraviolet cut-off scale, we arrive at the following expression after changing the integration over $d\gamma$ by $Tdf(\gamma,\beta) \equiv d\tau$ and gaussian integration over $h_{22} \geq 0$

$$G = \int DR_{\mu} Dr_{\mu} D\tilde{\nu}(\tau, \beta) d\eta(\tau, \beta) \exp[-A]$$
 (18)

where

$$A = \int_{0}^{T} d\tau \int_{0}^{1} d\beta \frac{1}{2\tilde{\nu}} [\dot{w}^{2} + (\sigma \tilde{\nu})^{2} r^{2} - 2\eta (\dot{w}r) + \eta^{2} r^{2}]$$
 (19)

and trivial rescaling $z, \bar{z} \to (\frac{\sigma}{2\bar{\alpha}})^{1/2}z, (\frac{\sigma}{2\bar{\alpha}})^{1/2}\bar{z}$ has been done.

At first we notice that the action doesn't depend on $f(\gamma, \beta)$ which reflects the invariance (4). So that the integral over $Df(\tau, \beta)$ can be factored out and it is equal to the volume of the reparametrization group.

In the standard way ⁵ we have introduced the physical quantity σ , which entered expression (14) and (19)

$$\sigma^2 = \bar{\alpha}(\sigma_0 - 2\bar{\alpha} + \frac{\text{const}}{\epsilon}). \tag{20}$$

In the action the function $\eta(\tau,\beta)$ is integrated over β being multiplied by function $\tilde{\nu}(\beta)$. In what follows the integration over $\tilde{\nu}$ will be performed by the steepest descent method and in the extremum $\tilde{\nu}((\beta-\frac{1}{2}))=\tilde{\nu}(-(\beta-\frac{1}{2}))$. So we can consider only the class of functions $\tilde{\nu}((\beta-1/2)^2)$, which are even functions of $(\beta-1/2)$.

It is convenient to decompose the functions $\eta(\tau, \beta)$ in orthogonal polinomials $P_n(\beta)$ with weight $\nu(\beta) \equiv 1/\tilde{\nu}(\beta)$

$$\eta(\tau,\beta) = \sum_{n} P_n(\beta) k_n(\tau) \tag{21}$$

$$\int_0^1 d\beta \nu(\beta) P_n(\beta) P_m(\beta) = \delta_{mn}. \tag{22}$$

After gaussian integration over $R(\gamma)$ with the condition (8)

$$\int DR \to \int D\dot{R} \int_{-i\infty}^{i\infty} d^4\lambda \exp\left[\int_{0}^{T} \lambda^{\mu} (\dot{R}_{\mu} - u_{\mu}) d\tau\right]$$
 (23)

it is easy to prove that the action can be represented, with λ being rewritten as $i\lambda$, in the following form

$$S = \frac{1}{2} \int_{0}^{T} d\tau [a_{3}\dot{r}^{2} + \sigma^{2}a_{-1}r^{2} + r^{2} \sum_{n=1}^{\infty} k_{n}^{2}(\tau) - 2i(a_{1})^{-1/2}k_{0}(\tau)(\lambda r) -$$

$$-2(a_3)^{1/2}(\dot{r}r)k_1(\tau) + \frac{\lambda^2}{a_1} + 2i(\lambda u)] \tag{24}$$

where we have introduced the following notation

$$a_1 = \int_0^1 \nu d\beta$$
, $a_3 = \int_0^1 (\beta - 1/2)^2 \nu d\beta$, $a_{-1} = \int_0^1 \frac{d\beta}{\nu}$. (25)

The function $k_0(\tau)$ enters only the fourth term in this expression and the integration over $Dk_0(\tau) = \prod_{i=1}^N dk_0(\tau_i)$, with N tending to infinity, gives the factor proportional to the infinite product of δ -functions;

$$\prod_{i=1}^{\infty} \delta(\lambda r(\tau_i)). \tag{26}$$

This means that there is a dynamical condition

$$(\lambda r) = 0. (27)$$

Integrations over $d^4\lambda$ and Dk_n with $n \ge 1$ lead (effectively in the limit $T \to \infty$) to the following expression (up to a change of the measure)

$$G = \int d\nu(\beta) Dr_{\mu} \delta(ru) \exp\left[-\frac{1}{2} \int_{0}^{T} d\tau \left[a_{1} + \left(\dot{r}^{2} - \frac{(r\dot{r})}{r^{2}}\right)a_{3} + \sigma^{2}a_{-1}r^{2}\right]\right]$$
(28)

where we have used the fact that the extremum value of λ_{μ} is

$$\lambda_{\mu} \sim u_{\mu}. \tag{29}$$

It is important that there are two constraints

$$(ru) \sim (rP) = 0 \tag{30}$$

$$(rp) = 0 \tag{31}$$

where P_{μ} is the total momentum of the string and

$$p_{\mu} = a_3(\dot{r}_{\mu} - \frac{(\dot{r}r)r_{\mu}}{r^2}) \tag{32}$$

is the relative momentum of the string.

The first constraint (30) means that only transverse to the total momentum P_{μ} components of r_{μ} are responsible for the dynamics of the string. The second one (31) reflects the fact that the action doesn't depend on the components of p_{μ} longitudinal to r_{μ} .

Let consider the rest system of the meson $u_{\mu} = (1, \vec{0})$ and go over from the Euclidean to the Minkovsky space

$$d\tau_E \to i d\tau_M \tag{33}$$

The Hamiltonian coresponding to the action (28) is

$$H(\vec{p}, \vec{r}) = 1/2\{\frac{1}{a_3}\frac{\hat{L}^2}{\vec{r}^2} + \sigma^2 a_{-1}\vec{r}^2 + a_1\}$$
 (34)

where $\hat{\vec{L}} = (\vec{r} \times \vec{p})$ is the operator of the angular momentum.

Since the hamiltonian does not contain the radial part of the kinetic term the field \vec{r}^2 is not a dynamical one. Thus in the spirit of the canonical formalism we must exclude the field \vec{r}^2 . This can be done by solving its equation of motion for a fixed value of the orbital momentum l

$$-\frac{l(l+1)}{a_3\vec{r}^4} + \sigma^2 \cdot a_{-1} = 0. \tag{35}$$

Inserting this extremum value of \vec{r}^2 into expression (34) we arrive at the final expression for the hamiltonian

$$H(\nu, l) = \frac{1}{2}a_1 + \sigma\sqrt{a_{-1}/a_3}\sqrt{l(l+1)}.$$
 (36)

Solving eq.(36) for the extremum of $\nu(\beta)$ with the conditions (25) we find

$$\nu(\beta) = \left(\frac{8\sigma\sqrt{(l+1)l}}{\pi}\right)^{1/2} \frac{1}{\sqrt{1-4(\beta-1/2)^2}}$$
(37)

with $\nu(\beta)$ playing the role of the energy density of the string. This solution corresponds to the spectrum of the hamiltonian

$$E_l^2 = M_l^2 = 2\pi\sigma\sqrt{l(l+1)}$$
 (38)

which agrees with the result obtained for the straight-line string in the canonical quantization formalism 2.

I am gratefull to A.B.Kaidalov and Yu.A.Simonov for useful discussion and suggestions.

B.M.Barbashov and V.V.Nesterenko, Introduction to the Relativistic String Theory. Singapore: World Scientific, 1990.

^{2.} E.B.Berdnikov and G.P.Pron'ko, Preprint IHEP 91-32.

^{3.} Yu.A.Simonov, Phys. Lett. B 226, 151 (1989); Yadernaya Fizika 54, 192 (1991).

^{4.} Dan La Course and M.G.Olsson, Phys. Rev. D 39, 2751 (1989).

^{5.} A.M.Polyakov, Gauge fields and strings. Harwood Academic Publishers, 1987.

^{6.} A.Yu.Dubin, A.B.Kaidalov, and Yu.A.Simonov, The QCD string with quarks., in press.