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A path-integral quantization of the relativistic straight-line string is proposed.
In an explicitly covariant form starting with the initial four-dimentional dynamics
of the relative coordinate r, the three-dimentional one is derived. A connection
between constraints appearing in the canonical formalism and the path integral
quantization is discussed.

1. Introduction. Various kinds of string-like models have been employed to
describe the world of hadrons . The massless relativistic straight-line string is
usually considered as the simplest dynamical basis of the model of hadrons. This
model has been quantized in the canonical quantization formalism 2. Dynamics
of quark and gluon fields leads us to the study of dynamics of the relativistic
string with masses at the ends 3, in which the quarks carry a finite fraction
‘of the energy-momentum of the hadron. But even the simplest version of the
straight-line string with masses at the ends cannot be made tractable in the
canonical quantization formalism %. In this paper we propose a path-integral
Lorentz-covariant approach to the quantization of the massless relativistic straight-
line string which can be generalized to the case of the straight-line string with
masses at the ends S.

2.  Gaussian representation for the action of the straight-line siring. The
standard form of the action of the straight-line string in Euclidean space is

S=oo/1d~//1dﬁ[u';2 cw'? — (W w')]M? (1)
0 0

where wy(7,3) are the coordinates of the string world surface

wu(7,8) =2,(7) - B+ Zu(y) - (1 - B) (2)

and z,(7),Z.(vy) are the coordinates of the ends of the string. The dot and the
prime stand for the derivatives over v and § parameters. Therefore we are to
consider and make it tractable the following functional integral in the Euclidean
space

G=/Dz,,('y)D2,,('y) exp[—S]. (3)
The action is invariant under the reparametrization
v = f(v,8), wu(v,B) — wu(f(7,8),8) (4)

with the function f(v,8) satisfying the conditions

f(o,ﬁ)=o,f(1,ﬁ)=1,9ff7;’7’—"l >0. )
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It is convenient to introduce a "center of mass” coordinate R,(y) and a relative
coordinate r,(y) as follows 3

Ru(1) = 3(5u() +20) 1alr) = 2u(7) = 2404) ©
so that ,
wy=Ry+(B-1/2)-7,. @)

The boundary conditions can be imposed in the Lorentz-invariant way
RBu(1) = Bu(0) =T sy - = 1 (®)

and 7,(0),74(1) are also fixed.

To develop a procedure to evaluate path-integral (3) we use the auxiliary fields
formalism, as is usually done in the string theory °

Let us rewrite (3) as

G=/Dr DR Dhabexp[—ﬂo/\/il-dzﬂs(aawyabw“;hab(f))=

+100
= / Dr DR Dhgy / DA®® exp[—0o / \/ﬁdzf]‘x

x exp[+ / VRA® by d?€] exp[— / VRA® 3, w, 8y whd?€] (9)

where d2¢ =dydB , & =7, &=, h=deth.

It is convenient to decompose

A% (€) = al£)h*(€) + £°(¢) (10)

with
F?hap =0,h% = (h71)%, (11)
In a similar way as it has been done in the case of Nambu-Goto string- ° we

can prove that in the continuum limit «(¢) and f°*(¢) can be replaced by their
mean values

<a(f)>—a&, <fP¢)>-0. (12)

Equation (12) reflects the fact, that a(£) is a scalar, while f**(£) is a traceless
tenzor.
Using (12) we obtain the following expression for G:

=/Dr DR Dhgy exp[—(ao—Z&)/\/Edzﬂ exp[—&/\/l_zh“baaw,‘abw“dzf] (13)
with the new action which is quadratic in w, and contains the new auxiliary
fields hgp.

3. Integration over the auziliary fields. The invariance (4) makes it convenient

to introduce the new variables #(8), f(£), n(¢). Separating out the collective mode
7(B) and the field f(v,B), satisfying conditions (5), we have

n———=(T o)LLy (14)
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And making a simple rescaling of h;; we also introduce the variable 7(v,) instead
of hn

o= g2 = (A (7"3))(Tn(7,ﬂ)) (15)

where T enters boundary condition (8). Taking into account the fact, that
Dhu Dhgg Dhu-Dh Dhu hgz thg (16)
and using the well known in the string theory formula

const

DHh ~ exp[—

/ VRd*€D5(B)Df (v, 6) (17)

where 1/e ~ A is the ultraviolet cut-off scale, we arrive at the following expression
after changing the integration over dy by Tdf(v,8) = dr and gaussian integration
over hys >0

G=/DR,, Dr, Di(r,B)dn(r,B) exp[—A] (18)
where
T 1
A= /dv"/‘dﬂ%[tb2 + (09)?r? = 2n(wr) + n?r?) (19)
o 0

and trivial rescaling z,z — (5% )1/2z (% )1/22 has been done.

At first we notice that the action doesn’t depend on f(v,B) which reflects the
invariance (4). So that the integral over Df(r,8) can be factored out and it is
equal to the volume of the reparametrization group. »

In the standard way ® we have introduced the physical quantity o, which
entered expression (14) and (19)

t
o = &(0o — 2 + cons

)- (20)

In the action the function 7(r,B) is integrated over [ being multiplied by
function 7(B3). In what follows the integration over ¥ will be performed by the
steepest descent method and in the extremum ((8 — 1)) =#(—(8 — })). So we
can consider only the class of functions #((8 —1/2)?), which are even functions of
(6-1/2).

It is convenient to decompose the functions 7(7,8) in orthogonal polinomials

P,(B) with weight v(8) = 1/5(B)
B) =Y Pa(B)ka(r) (21)

|| 484(0)P(8)Pn(6) = . (22)

After gaussian integration over R(y) with the condition (8)

/DR-—»/DR / d‘Aexp[/A“(R ~ u,)dr] (23)

—100
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it is easy to prove that the action can be represented, with X being rewritten as
1A, in the following form

T
1 [}
S= i/dr[agiz +ola_yr? 412 E k2(r) — 2i(a1)~ Y 2ko(T)(Ar)—
0 n=1

2
~2(a3) /2 (Fr)ku(r) + 2— + 2i(Au)] (24)
1
where we have introduced the following notation
1 1 1
2 ds
ar= [vap, as= [(B-1/2vdB,a0= [ (25)
0 0 0

The function ko(r) enters onmly the fourth term in this expression and the
integration over Dko(‘r)===I'['-I~;1 dko(r;), with N tending to infinity, gives the factor
proportional to the infinite product of é-functions;

1'[ §(Ar(%)). (26)

This means that there is a dynamical condition
(Ar)=0. (27)

Integrations over d*)A and Dk, with n > 1 lead (effectively in the limit T — oo)
to the following expression (up to a change of the measure)

T .
G= / dv(B)Dr,6(ru) exp[—%/(; drla; + (+* - @)a;; +o%a_17?] (28)

r

where we have used the fact that the extremum value of A, is
A~ Uy (29)

It is important that there are two conmstraints

(ru) ~ (rP)=0 (30)
(rp)=0 (31)
where P, is the total momentum of the string and
) rr)T
pu = aslr — 0% (32)

is the relative momentum of the string.

The first constraint (30) means that only transverse to the total momentum
P, components of r, are responsible for the dynamics of the string. The second
one (31) reflects the fact that the action doesn’t depend on the components of
pu longitudinal to 7.
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Let consider the rest system of the meson u, =(1,0) and go over from the
Euclidean to the Minkovsky space

drg — idry (33)

The Hamiltonian coresponding to the action (28) is

A

112
H(p,7) = 1/2{£§ +0o%a_17 + a1} (34)

where L =(7x §) is the operator of the angular momentum.

Since the hamiltonian does not contain the radial part of the kinetic term the
field 72 is not a dynamical one. Thus in the spirit of the canonical formalism we
must exclude the field #2. This can be dome by solving its equation of motion
for a fixed value of the orbital momentum !

i(1+1) +ol-q

_1=C. (35)

Inserting this extremum value of 72 into expression (34) we arrive at the final
expression for the hamiltonian

H(y,l)= %al +ov/a_1/az\/I(1 4 1). (36)
Solving eq.(36) for the extremum of v(f) with the conditions (25) we find
(B + 1), - 1
v(B) = (———") JT=H =12 (37)

with v(B) playing the role of the energy density of the string. This solution
corresponds to the spectram of the hamiltonian

E} =M =2xa /11 + 1) (38)

which agrees with the result obtained for the straight-line string in the canonical
quantization formalism 2.

I am gratefull to A.B.Kaidalov and Yu.A.Simonov for useful discussion and
suggestions.
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