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The present paper is based on a theory which includes gravity and a complex
scalar field '. It is shown shown in such a theory we can proceed the evolution
from instantons in the classically forbidden (Euclidean) region in minisuperspace
to the inflationary universe in the classically allowed (Minkowski) region. The
characteristics for the Hamilton-Jacobi equation, which define the action in the
quasiclassical approximation, are described by four differential equations of first
order. This four dimensional dynamical system was integrated numerically. In
the Euclidean closed region we found two types of instantons. It is shown that
the instantons correspond to extremal trajectories. The existence of two types of
instantons gives different possibilities for tunncling from Euclidean to Minkowski
regions and for creation of inflationary universes.

The well known contemporary theory of an inflationary universe is based on a
Friedmann homogeneous model in the presence of a real scalar field. In such a
model it is possible to analyse all possible inflationary solutions for three types of
geometry (flat, open and closed) depending on the inital conditions, which we fix
on some surface in phase-space and which we define as the end of the quantum
era 2. At this initial surface the density of energy has an order of the Planck
energy €, ~ mh.

The quantum creation of an universe in such model was studied in 3. The only
result which was possible to get was the creation of a large, but empty universe
(free from field) which as it is known 2 cannot inflate. In ! we formulated a
model which considers gravity (Friedmann closed model) induced by complex scalar

field. One of the reasons to comsider a complex instead of real scalar field is the
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fact, that the energy-momentum tensor for such a field simply corresponds with
the hydrodynamical energy-momentum tensor usually used in general relativity.
The main result obtained in ! is the existence of a closed area.in minisuperspace
(metric and field) which is classically forbidden and which has a boundary partly
convex and partly concave. Due to this fact there are two possible types of
instantons, which are able after tunneling to the classically allowed region to
create the inflationary universe. The model of complex scalar field coupled to
gravity was previously applied by K.Lee * to study wormhole physics, a problem
different from ours.!)

Let as recall the main equations of our model !. The action for gravitation

and a complex massive scalar field has the following form 2)
= d4 M: 1 v * 1 2 * 1
S= [ dzv=g| -1 R+ 759" 0up), —amiee’ = [, (1

where the metric g,, for a homogeneous closed model and the field ¢ we choese

as follows
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and h;; is the metric of the unit 3-sphere.
The action (3) includes also the cosmological term A. After standard calculations

we obtain the Hamiltonian form of the action

3
where a(t) =( e*(®) is the scale factor of the space section (3-sphere)
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where the canonical momentums are
e3a . e3a . e3a22 .
Pa = —Ta; Pz = —]_V—z; Po = N 0. (5)

2
We introduce a dimensionless cosmological constant A and v= (%’%&)

Using the conservation of current j, of the field ¢ we can exclude the constant
momentum pe = Q, where Q is a new constant of the theory playing a crucial
role for the results. The final expression for the Hamiltonian action for the
two-dimensional minisuperspace is (with the choise of lapse N =1):

1
Su = [ dtle™> (=5 + §2) + ), (6)

") Authors thank D.Brill for attracting their attention to the work *
2)We expect that the introdiction of interaction of the field of a type Ap? or a Higgs field will
not change qualitativelly the main results, but it needs special investigation.



where we introduce the notation
e—30 2

m?*(a,z) = o ve® + €3%(z? 4 A) )
and the constraint equation is
H = *(~p +p7) + m*(a,z) = 0. (8)

The Wheeler-DeWitt equation which corresponds to equation (8) (px — 2Vy)
is
a2  8z?

This WD equation we write in the simplest form assuming that metric of the
minisuperspace 1s

[hze'3“ ( > _ ‘9—2) +m2(a,:c)] ¥(a, z) = 0. 9)

3a 0
Guv ='[ eO —e3a ] (10)

and its commutation brackets with momentum p, in the quasiclassical approxima-
tion will be not important. The obtained WD equation (9) is a Klein-Gordon
equation with m? depending on metric « and field z and which can be negative
in some part of the minisuperspace.. Let us mention, that when we write the
WD equation in the form (9) we asume, that the ps variable is frozen and the
corresponding motion is not quantized. Using the analogy between our variables o
and z, and time and space coordinates, then one possible interpretation is that in
the region m? < 0 (see 3) the processes of creation of particles are occuring in the
second quantized theory of fields of universes ¥(a,z). This region is classically
forbidden. The form of this region depends on three parameters: y (of the mass
of the scalar field), the constant @ and the cosmological constant A. The possible
forms are given on fig.1. The remarkable fact, which we observe is the possibility
to obtain not only convex boundaries of the regions m? < 0, but also partly
convex and partly concave boundaries. The typical form of the surface m? as a
function of @ and z and the corresponding equipotential map are shown on fig.2.

The constant @ is respomsible for a closing of the upper part of the region
m? < 0 and the cosmological constant A for a closing of the right part. The
number of created universes and the most probable trajectories we can find from
the solution of a quasiclassical equations in classically allowed and forbidden regions.

I. Minkowski space - classically allowed region, m? > 0. The action in this
case Is

su =75 [ atlpp, - m*(e, )] (11)

and the constraint equation is

1
H=§[p”p#+m2(a,m)]=0. (12)
Corresponding Hamilton-Jacobi equation is
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Fig.l. The boundary m?=0: (a} for fixed A=0.2 and v =3 and different Q2=0,1,2,3,4, (b) for

fixed A = (.1 and Q%=1 and different v=2,3,4,5,6
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Fig.2. The typical form (a) and the equipotential map (b) of the surface m? inside the Buclidean

region (A =0.2, Q% =10, v =5.1578)

«_ _ .
p* =q, Pa=—€%a.

The variation of the action Sy

1 am?
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gives the equation for characteristics
. 1
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These equations describe a four-dimensional dynamical system

S (miVg), Y=
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y=-3yz-z+ :?&.
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with the first integral of motion
(=22 4+ %)+ m?=0. (18)

2. Euclidean space - classically forbidden region, m? < 0. The Euclidean
action Sg can be obtained by Wick rotation of the proper time t — —it

S5=5 [ dt"pu+ m*(a, ) (19)

with the constraint equation

H= —[pm‘ m*(a, 2)] = \ (20)

The variation of Sgs
1 Om?
6Sp=-3 / dtsz* (_2,;,‘ + m2(log v=g), + %) , (21)
gives the equation for instanton
. 1 i}
Pu 2,/=g 8zH

The Hamilton Jacobi equation for the action of the instanton in quasiclassical
approximation (I =Sg) is

(m*v=g),  V=g=é*. (22)

oI 41
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Its characteristics desciibe a four-dimensional dynamical system

=Y,
a=z,
2
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with the first integral of motion
(22 —y*) + m?=0. {25)

In the Euclidean region it is necessary to find extremal instanton trajectories.
The condition that the trajectory is extremal can be written as

“ -

P, pPuGi, ) = 0 26

i - , (26)
{f’(f,ne" 0

where i,j denote the initial and final points of the trajectory.



In (26) the first condition follows from the fact, that the irajectory starts from
the boundary m? =0 and the second means that the action has an extremum
with respect to variation of the initial and final points of the trajectory along the
curve m?=0. If e, is the tangential vector to the curve m? — 0 defined by

e,nt =0, (27)
thet

0 , 4
Ny = dzh ( ~) |‘m’=0

(28)

is the vector normal to the curle m? =0. As g—f} = p, the extremum condition
along the direction e, can be written

§1
e = pune’ =0, (29)

which coincides the second equation in (26).

There are two possibilities to satisfy the condition (26), as was shown in
At the convex part of the boundary we can satisfy (26) omly if p, = 0. But
as we have shown the boundary m? =0 can have concave part with inflection
points. In the last case there is a possibility of existence of a mnontrivial solition
which correspondos to the entrance of a trajectory into region m? < 0 with nonzero
velocity along the tangent. Such a solution, if it exists, has to satisfy the condition

1

Pu ™ ﬂnlu (30)

where the parameter (3 defines the velocity with which the trajectory enters the
region m? < 0. As the vector pu at the entrance point is a light-like vector
(pup* = 0) the only possibility satisfy this condition is to choose the parameters
Q, vy, A in such a way, that at one of the two inflection points the normal vector
will be light-like, i.e.

(na)® = (n)* =0, 31

i.e.will have a slope of 45° (and the curve m? =0 at this point will have inclination
—46°). The inflection poin we need to provide the possibility for the trajestory
to enter and exit the region m? < 0. On the boundary of the Euclidean region
m? < 0 there- are two singular points of the equation (24). They are defined by
the conditions

1
=
8
I
]
=

y (32)

They coincide with the leftmost and rightmost points of the region m? =0, where

=0 Npg=——=——" " 4 22e3 =0, (33)
T z

The trajectories of the dynamical systems (17) and (24) in Minkowski and
Euclidean spaces naturally cannot be found analytically. We present the first
results of numerical simulations. We start with the search for 'instantons in
the region m? < 0. Selecting the parameter 8 in (30) which defines the initial
velocity of the instanton in the minisuperspace we find a trajectory starting at



the inflection point I, which moves in the direction of the singularity Sp and
reachs a point R;, where the velocity p, = 0. After the reflection from this
point it returns back to the inflection poin I; from which it can tunnel to the
Minkowski space and leave the region m? < 0. At the reflection point R; which
is becoming closer to the singularity Sgp with decreasing A, the half-instation can
also tunnel and emit inflationary universe. All these possibilities can be seen on
fig.3a, where we show the Minkowski trajectory, describing the quantum oscillating
universe tunneling into the Euclidean region, then the trajectory of the instixton
and the inflationary universe leaving the Euclidean region. The corresponding rate
of inflation is shown on fig.3b. The reflected trajectory from point Rj, which
leaves the Euclidean region at the point I;, describes in quasiclassical language an
unlimited contraction, i.e. a collapse. This trajectory asymptotically tends to knot
at infinity with the slope & ~ —a(p,p* = 0). The described picture has common
features with the well known process of quantum tunneling in quantum mechanics.
Because of the large absolute value of the negative action of the instanton we
shall not go here into all details of the process of tunneling of the instanton. We
hope to return to this problem later.
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Fig.3. The "zero-zero” instation, the nontrivial instanton, the corresponding trajectories in
Minkovski space for A =0.2, Q%= 10, v=5.1578 (a,c), A=0.1, Q*=1, y=243 (d) and the rate
of the inflation (%)

Besides the described nontrivial instanton there is an second instanton (”zero-



zero” instanton) with a trajectory staring on the left convex part of the boundary
at the point I, with p, =0 (see fig.3c) and propagating to the point Ro(p, =0),
where it can be either reflected or tunneled into the Minkowski region as an
inflationary universe. The reflected half-instanton is returning to the point Io,
where it can be also reflected or tunneled into the Minkowski region. This
trajectory will propagate in the direction of the above mentioned knot singularity
at infinity. Let mention that on the concave part of the boundary of the Euclidean
"banana-like” region there are two inflection points, but only one of them has a
normal which is a null vector. Therefore inside this region we have simultaneouslly
not more than two instantons: nontrivial or ”zero-zero”. The trajectories, which
enter from Minkowski region into the Euclidean region through the points I; and
Iy, are emitted from the repulsive knot located at z = 4co.

There is also another interesting possibility that the “zero-zero” instanton can
be many times reflected from the points Io and Ro and in some sense be trapped
in the Euclidean region. Such an instanton can be also considered as a source of
"pair” creation of an inflationary universe and antiinflationary (collapsing) universe
from “nothing” (see ).

The numerical analysis shows that the nontrivial instanton as well as the
”yero-zero” instanton correspond to the local maximums of the action. Let us give
the formula for the action of the instanton. From (19) and (20) we find

a

! 2
Sg = \/dtm2 =/dtp“p” =— [ dayf1 - (?—) v —m?ede, (34)
o

a;

The numerical calculation of the action according to this equation for the choice of
parameters A, v and Q given at fig.3d gives Ip ~ —7 for the ”zero-zero” instanton
and Iy~ —4 for the nontrivial instanton. The action of the DeSitter instanton in
our notations is

4312
I =, 35
T (35)
The absolute value of this action is always larger than the corresponding action
in our Euclidean region. Let us emphasize and it is well known that the action

for the gravitational instanton is negative. Therefore

¥ ~ e (36)

for an instanton is a large number and it is not possible to give a probabilistic
interpretation of this number. But if |¥|? is considered as a number of created
‘universes in the region of nonstability m? < 0 that our Euclidean region can act as
a amplifier, which selects only one of the trajectories from a large number arriving
from the Minkowski region and makes the creation of the inflationary universe from
the instanton most probable. This attracts attention also on the idea 3, that the
ratio e~2{0/e=2Ips can be interpreted as a probability of creation of the universe
(for the definition of Ips see (35)). The further analysis has to show how fruitful
is our proposed model. In any case it gives us a bridge between the quantum and
the classical cosmology. And if we consider the introduced parameters as world
constants of a future theory, then our theory is a model which shows how the
initial conditions for existing universe could follow from the theory and not to be
implemented ”ad-hoc”.
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