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I demonstrate that a transverse size of the ejectile state emerging from
the quasielastic e + p scattering on nuclei does not decrease with the momentum
transfer Q. None the less, a strength of nuclear attenuation vanishes with Q, and I
identify the QCD mechanism of vanishing attenuation (colour transparency). Strong
correlation between the onset of colour transparency regime and the asymptotic
behaviour of charge form factors is found. Colour transparency regime is elusive
up to very large Q.

The quasielatsic (e, e'p) scattering on nuclei is a much discussed candidate reac-
ticn for observation of colour transparency (CT) - vanishing final state interaction
(FSI) at large momentum transfer Q. The standard treatment of this reaction
focuses on the assertion 2 that the ejectile state is dominated by small size,
p~ 1/Q, quark configurations, which have small interaction cross section o(p) ox p?
34 and, henceforth, weak FSI.

The subject of this paper is an approach to CT regime. Firstly, I demonstrate
that contrary to the reasoning of 1'? the true transverse size of the ejectile state

IE Mnlp Z' <1'|Jem,p ZFtp(Q)|Z>1 (1)

defined as p% = (E|p*|E)/(E|E) does not decrease with Q. Secondly, I introduce
the QCD observable ., = (p|§|E)/(p|E) which quantifies the asymptotic strength
of FSI, where & is the diffraction scattering (cross section) operator. I show that
although p% = const(Q), the strength of FSI ., does none the less vanish at large
Q, and I identify the QCD mechanism of vanishing %.,.

This observable 3., controls an approach of the nuclear transmission coefficient
(nuclear traunsparency) Trg to the CT regime of Trg =1I:

do I
Tra = Ada"; %1 = Sepgy /dsz(b)z. (2)
Here b is the impact parameter, T(b) = [dzn4(b,z) is the optical thickness of
the nucleus, [d?bT(b)? « A?/R% o AY3. Expansion (2) is valid at 1 - Trs < |,
when FSI is weak and only the single rescattering of the ejectile is important. In
generic case Try contains the n-fold rescattering terms o (p|5™|E) as well.

In order to elucidate which aspect of QCD 1is tested by measuring X.p,, I start
with the electron-pion scattering in the non-relativistic quark model (NRQM),
where (here r={(p,z), the g"plane is normal to the momentum transfer Q)

F@) = [ @5 [[delo(e, P exe (—%QZ> =/(~;?)Egs0*(k+ SQe(). (3
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The proof of p% = const(Q) is straightforward: In the NRQM |E) = exp (%Qz) |p)
and (E|E) =1. Since the interaction cross section o(p) and p? do not depend on z,
one readily finds (E|p?|E) = (p|p?|p). Recall that by the nature of CT experiments
the electroproduced ejectile state |E) is probed by its intranuclear FSI at very
short proper time scales when the intrinsic motion of quarks in nucleons can be
neglected, i.e., the initial transverse separation of quarks g is obviously retained
(notice a close similarity to Migdal’s celebrated shake-up approximation introduced
in 1939 ®). Consequently, predictions %7 of CT effects under the assumption of
ejectile of vanishing initial size are quite erroneous.

Since & o p?, the alternate measure of the strength of FSI is <p2> =
(p|p*|E)/{p|E) which should not be confused with p% (the subsequent presen-
tation follows, and supersedes, the authors preprint %)

(') =% Fl

=Feml(Q)/ dSk [f’k ok + Q)J [P, 0] - “

In the relativistic case of Q? >> m? one must use the Drell-Yan light-cone wave
functions (LCWF). Let p, — oo and let Q be along the y-axis. Then, p, is the
transverse size which does not change under the Lorentz transormation from the
light-cone frame in which the momentum transfer Q is purely transversal to the
laboratory frame in which Q is purely longitudinal, so that one must compute

(p*) =2(p2) =2(82 ):

/d2 /dz|\Il z, [)')|2exp(—z—Qz)

rd’k d 1
Fenl@)7 | 7 i1 =gy (M )e(,) = / dz / d*Fexp[—i(1 - 2)7Q)|¥(z, )’

)
2 =__1_. d’k _C_lz_ = a2\ ( Ar2 _2kz_ )
()= 50y | T w0 | ] (6)

where z is a fraction of the (light-cone) momentum of the pion carried by
the struck quark, and in (5) the invariant variables ° of LCWF equal M2 =
(m2 +k?)/z(l — z) and M} =[m?+ (k+(1-2)Q)?/z(] —z). Evidently, the p%
retention property holds in the relativistic case too.

Consider now the Q dependence of the strength of FSI. With the Gaussian
Ansatz for the NRQM wave function the d’F and dz integrations in eqs.(3),(4)
do factorize, so that (p?) = R? and does not depend on Q2. With the Gaussian
LCWF o(M?) = ¢, exp(—1 R2M?) the form factor (5) is dominated by the end-point
contribution from

l—z~2m,/Q (7)

and from (6} omne finds (p2> ~(R*/(1 - z)) R*Q/m, . The striking observation
is that the CT law o(p) « p* does not guarantee vanishing FSI, and neither Q
independent nor rising with Q strength of FSI contradicts any general principles.
Indeed, in the expansion over the intermediate states

(Pl6IE) = (plo]i)(ilJem(Q)IP) (8)

i

the matrix elements of the diffractive operator (p|6}i) do not depend on energy
and/or Q. Furthermore, the larger is Q2 the heavier are the electroproduced
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intermediate states |i), which have the ever growing radius and interaction cross
section.

Now I shall demonstrate that, none the less, QCD as a theory of strong
interactions predicts that ., vanishes at large Q2. Besides the law o(p) « p?, the
origin of vanishing X¥., is the one-gluon exchange, Coulomb, interaction between
the constituent (anti)quarks of the hadron, which is an indispensable property of
QCD. I shall illustrate the basic idea of the proof starting with the Schrédinger
equation in the momentum-representation:

1 i
#Q) = g7 | GV (@)oo, ©)

The confining potential is the dominant one, and the short-range Coulomb in-
teraction can be treated as weak perturbation. Then, the dominant (confining)
part of ¢(k) is a steep function of k. On the other hand, the asymptotics
of the V(Q — k) at large Q is dominated by the QCD one-gluon exchange:
V(Q —~ k) « 1/(Q — k) (the logarithmic as(Q) factor is not significant for our
purposes). As a result, asymptotically ¢(Q) < 1/Q*, and with this Coulomb tail
the asymptotics of the form factor (FF) will be dominated by contributions when
one of the wave functions in egs.(3,4) will be in the Gaussian-like (confining)
regime and the second in Coulomb tail regime. Then, in (3) I can neglect k
compared to Q in ok + %Q), factor out w(%Q), and will find the "QCD power-
law” asymptotics F.,,,(Q) o go(%Q) o 1/Q* (in the above analysis I have followed
19 in the relativistic case V(Q) should be substituted for the relativistic ~ 180°
Coulomb scattering amplitude, which leads to ¢(M?) x 1/M2). In the same
"QCD dominated” regime, the Oy differentiations in (4) lead to the extra factor

~ R?k?/Q? in the integrand, and I indeed find <p2> o 1/Q?. Hence the major
conclusion: both vanishing strength of FSI in quasielastic (e,e’p) scattering and
power-law asymptotics of the electromagnetic FF 1712 originate from exactly the
same short-distance QCD interaction in hadrons. In terms of expansions (1) and
(8), the origin of vanishing FSI is not in a vanishing size pg of the ejectile, rather
weak FSI emerges after projecting the ejectile state onto the final state proton,
and comes from cancellattions between the diagonal, |i) = |p), and off-diagonal,
i) 7 |p), intranuclear rescatterings (see also the CT sum rule !%).

The most important effect of the one-gluon exchange QCD interaction in
the relativistic case is that it eliminates a dominance of the end-point, eq.(7),
contribution to the FF. The FF will be dominated by finite, weakly Q dependent,
values of 1 -z. Nevertheless, a presence of extra z?(1 —z)? in the denominator of
the integrand of (0) enhances a sensitivity of a strength of FSI to the end-point
contribution. Consequently, the onset of vanishing Zep is slower than the onset of
the power asymptotics of the FF.

In Fig.l I present the results from the light-cone toy mcdel of the scalar pion
with the scalar quarks, which incorporates the principal features of the QCD wave
function:

1 1
M? (—~R2M? | 1
(M*) o exp! 3 )+a(l+R2M2/2)" (10)
For our purposes, the presence of as(M?)" factor in the ‘Coulomb’ correction is
not essential. To the first order in the ‘Coulomb’ correction the o« 1/Q? behaviour
of the pion FF corresponds to n=1.
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Puc.l. Correlation of the asymptotic behaviour of the electromagnetic form factor with the
strength of final state interaction: top - QzFem(Q) , bottom - the strength of final state
interaction measured by (pz(Q))/(pz(O)) vs. Q2. The order of magnitude of the asymptotic
normalization suggested by perturbative QCD is indicated by the arrow. The curves correspond
to ( mg = 150 (MeV/c)?):

(a) - the Gaussian wave function;

(b) - the Gaussian+Coulomb wave function, m = 150 (MeV/c)?, a=0.1;

(¢) - the Gaussian+Coulomb wave function, m =150 (MeV/c)?, a=001;

(d) - the Gaussian4+Coulomb wave function, mg =300 (MeV/c)?, a=0.01;

(¢) - the monopole form factor.

Experimentally, the pion FF follows the p%-pole formula F.n,(Q) = 1/(1+Q2/mf,)
up to Q¥ ~ 10(GeV/c)® . Therefore, in all cases I adjust R* to (RZ,)=06/m;.
The Coulomb-admixture parameter « controls the large-Q normalization A% =
Q%F,(Q), changing from A? — 0 for the Gaussian LCWF, to A’ = m} for the
p%-dominated monopole FF (Since neither the running QCD coupling, nor the the
higher order QCD effects like the Sudakov FF 15 see below, are included, our
toy model should not be extended up to very large Q*). As a case in between
I consider LCWF’s giving A? ~ 8rasfZ ~ 0.1(GeV/c)?, as suggested by the
perturbative QCD *2. In the problem of interest it is natural to use the effective
mass of quarks m, somewhere in between the spectroscopic constituent mass of
~ 300 MeV/c? and the current mass ~ 10 MeV/c?>. Here 1 use my =150 MeV, 2.

The principal findings are:

|. With the purely Gaussian LCWF, a« = 0, R = 1.90(GeV/c)~1, the FF
Forn(Q) x exp(—R?*m,Q)/Q*® follows closely the monopole FF up to Q% ~
5(GeV/c)® and gives rising strength of FSL

2. With a=0.1, R= 223(GeV/c)~! one reproduces the monopole FF. Notice,
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that even in this case a < 1. The strength of FSI stays approximately
constant up to Q% ~ 10 — 20(GeV/c)?, and then decreases rapidly with Q2.

3. The FF with a =001, R=1.95(GeV/c)"! follows the monopole FF up to
Q* ~ 10(GeV/c)? and has the large-Q normalization close to the QCD
prediction.  The strength of FSI first increases up to a saturation at
Q% ~ 30 — 40 (GeV/c)? and steeply decreases beyond ~ 100(GeV/c)?.

4. With the choice of m,=300MeV/c? ( @a=0.01 and R=2.72(GeV/c)™!) the
strength of FSI stays approximately constant up to Q% ~ 10(GeV/c)? and
then starts decreasing. However, the large-Q normalization of this FF drops

to the perturbative QCD value too rapidly, in conflict with the experiment
14

I conclude that the steeper is a decrease of the FF and the smaller is the
large-Q normalization, the slower is an onset of CT regime. With realistic LCWF
models FSI might remain strong up to very large Q2. An interesting observation
is that strength of FSI is very sensitive to the quark structure of the hadron. The
QCD asymptotics L., o< 1/Q? should be even more elusive in the electron-proton
scattering 6.

Besides the short distance one-gluon exchange interaction between (anti)quarks,
there is still another QCD mechanism which filters the small-size components of
hadrons in ep scattering: the Sudakov FF 1°. Asking for the elastic scattering
one asks for no-radiation of gluons. For the quark-antiquark system of size g, hit
by the electron with the momentum transfer Q, a mean number of the would-
be radiated gluons N,, which would have taken a fraction z, of the hadrons
momentum ZTyin < €4 < 1, equals 17

16 dz (9 d’k as(k?) 1 — exp(—ikp
(pr Tonin) & / / I S ) kz( —) (11)

min

Then, the probability of no-radiation, alias the Sudakov FF, can be estimated as
(for the more rigorous derivation see %) Fs(p, Q,Zmin) =~ exp[——Ng(p, Q?',:Em,‘,,)]
and the Sudakov-modified charge FF (5) takes the form

/dx/dzpexp i(1 - 2)7Q)¥(z, AP Fs(p, @ 1 ~2)  (12)

The relative significance of the Sudakov suppression of the large p contribution
depends on the LCWF. With the Gaussian LCWF we have the end-point eq.(7)
dominance, so that 2log(1/zmin) =log(Q%/m?) and the Sudakov FF takes on the

standard form
8 2 1/0°
Fs(p,Q,zm,-n)zexp{ = log(Q )log [5'55(—(—/327)]} (13)

q

Eq.(13) holds before the onset of Coulomb dominance regime, when =z, will
become small but finite and will very weakly depend on . In this case the
Sudakov suprression will be a very slow function of Q@ and the size p and its
effect on the rate of vanishing of ¥, will be marginal (for the recent discussion
of the Sudakov effects see also !°).
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Conclusions: I have shown that the onset of weak FSI is closely related to
the onset of the power-law asymptotics of electromagnetic FF. The smaller is the
large-Q normalization QZ?F,,,(Q?), the larger G? is needed for the onset of colour
transparency. The end-point contribution is more significant in a strength of FSI
than in the FF. With realistic LCWF’s I find very late onset of the CT regime,
which is consistent with the preliminary findings from the NE-18 experiment at
SLAC 20

Above I have focused on asymptotic Q?, assuming always a complete set of
intermediate excited states [1). At moderately large Q? there is still another rea-
son for the elusive colour transparency regime: only finite number of intermediate
states can be electroproduced and can contribute to the expansion (8) at finite
energy 3.
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