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The process of relaxation to a suddenly created local potential is studied
for a (quasi-) two-dimensinal metals with Van Hove points near the Fermi surface.
The new intermediate time-asymptotic for the core hole Green's function is found.
It turns out, that the problem can not be described in terms of creation of
independent electron-hole pairs.

The consequences of the logarithmic singularity in the single electron density
of states, caused by the Van Hove points > for (quasi-) two-dimensional metals,
were extensively studied, mainly In connection with the effects of electron-electron
interaction: charge-density-wave ? and superconducting 3 instabilities. A more
refined and mathematically elegant theory turned to be necessary for the model
case, in which, in addition to the Van Hove points (always existing ), there is
the nesting 5. In this paper it is shown, that the local properties of metals in the
presence of Van Hove singilarity are also peculiar. Such an investigation makes
sence, of course, only in the metallic state, i.e. above the tramsition temperature
to some nonmetallic phase (which can be very small or, in some cases, even Zzero
5.

The only characteristic of the metal which is relevant for the local properties
is the local electron Green's function

go(t) = =1 > (Tar(t)ay . (0))-

k&’

Due to the spectral representation

9o = / dep(e)|w — € + idsigne]” !

it is completly determined by the density of states, which, near the Van Hove
singularity, has a shape: p(w) = (1/W)In[W/max({|wl, |iz])], where W is a constant
of order of the conduction electrons bandwidth and p is the chemical potential,
accounted from the constant energy surface, which contains the Van Hove points.

One of the most interesting local processes in metals is the relaxation to a
suddenly created potential (for simplicity, but without changing the qualitative
results, the potential will be treated below as a point one). This process is the
essence of the so-called X-ray problem 6 which was in principle solved (for the
fin.te density of states at the Fermi surface) by Noziéres and De Dominicis *.

i )Present address: Institut fiir Theoretische Physik, Rhein -Westf. Technische Hochschule Aachen,
Templergraben 55, 5100 Aachen, Germany.
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They have introduced the transient electron Green‘s function, which obeys the
Dyson equation

1

t

o(r, 7'y =1dg, (7 - 7'} + )\V/ dr''go(T — T")p(7", ") (1)

t

and anables one to calcvlate all the quantities of physical interest {X-ray transition
rate, etc.; for more detals see 7). The eq(l) is written for the case of absorption.
The case of emission is completly analogous and does not require any special
consideration. Here V is the interaction of the conduction electrons with the core
hole, created by the absorption of X-ray quantum, 0 < A <1 and for large 7 the

kernel of (1) has the form:

Int

90(7)=“V‘V“7‘_> 7'>>1//W77 (2)

where 4 is set equal to zero. In absence of the Van Hove singularity one
would has go(7) ~ 1/7, instead of (2). Thus, in the present case, as it can be
understood already from (2), it is more difficult for the electronic system to relax
to an external potential (a nonzero u will reduce the asymptotic (2) to ~ 1/7 for
7> 1/lu|, so one has to demand |u| K W).

Y A | D

Fig.l. The linked cluster expansion for the closed loops contribution C(t), lines represent electron
(ireen's functions, points - interactions .with the potential, which acts during the tume interval
f}‘,,t’]

The core hole Green‘s function G(t) = —i(Th(t)}b*(0)), which tells us how
the core hole level broadens due to the interaction with electrons, using the
linked clusters theorem, can be written as G(t) = —iexp[C(t)], where C(t) is the
contribution of all single closed loops {Fig.1):

Clt)=—iV /Old)\ /ttl dro(r, 7).

The first and third graphs on the Fig.l give:

, 2 472 5
ReC(t) = —792 In ¢+ ~—i?;—,g4 In”t, {:

[N
~—

where the coupling constant g = V/W is introduced. The second graph vanishes
for the case of electron-hole symmetry (one can show also, that in the absence of
such a symmetry it would contribute a ferm: ~ g° In® t). The imaginary part of
C(t) is responsible for the energy shift of the core hole level, in which I am not
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interested here. Note also, ihat the effect of election spin is included in (3); it
simply doubles the C(t).

The result (3) differs qualitatively from the usual asymptotical expression:
ReClt) = -2[8(g)/7]*Int, where é(g) is the scattering phase. But the point is that
the second nonvanishing term of the perturbation expansion is even more singular
than the first one, what means that the perturbation theory never works for large
enough ¢ [t is also essentially unlike the usual case, in which the first term
of linked cluster expantion remains the main one for arbitrary large t (and, of
course, for y € I; see 7\8}‘

The eqg(1) with kernel (2) can not be solved exactly, but, fortunately, for the
particular preblem of calenlation C{#) one can adopt the Hamman's point of view
9 of taking the limit ¢=0,¢ — oo in eq{l) fromr the very beginning and then use
the standart methods of solving singular integral equations '“. Not having place
in this letter for more mathematical details I am forced here only to quote the

results and leave its detailed justification for an extended paper '!. The exact
asymiptotic for the closed loops contribution is:

_ 1

ReC(t)=—~§lnt, t— oo, ¢ %0, (4)

what would coinside with the standard expiession if one inserts the scattering
phase §=x/2. For the X-ray transition rate oune has:

F(v)y ~ (W/u)y 22+sendin=(Wiy), v=w - wt {absorption)
F(v) ~ (W/p)~ Y260 In(W/y), v=w'" —w (emission)

Thus, the old X-ray probiem acquires new colors for the case of a metal
with Van Hove singulanity. The perturbation expansion leads to the unusual
asymptotic ReC'(t) ~ in°t, which serves as imtermediate one for /W <t < t,=
(1/Whyexp(l/g) (as it can be seen e.g. from comparison of the terms in (3)).
This result reflects the enhanced density of states of the electron-hole excitations
(which is ppn ~wln2(W/w}) and it would be exact if these exsitations could be
created independently. But it is wot the case in higher order processes (because of
the Pauli principle) and, as a resuli, for t > ¢, more and more singularities occur
{with different signs) and finally they sum up in the usual log-asymptotic (Fig.2).
So, for large enough ¢ the problem can not be described, even qualitatively,
in terms of independent electron-hole pairs '?. Note, that the pre-log factor is
potenticl independent. It means. tkat the limit ¢ — O can be reached not due to
the diminishing of the pre-log factor, as in usual case, but through the shifting
(t, = o0) of the region of applicability (¢ >>1,) of the result (4). The additional
log factor survives in the transition rate, but in a different powers for absorption
and emission, what iakes the threshold strongly asymmetrical. It is natural, since
the transition rate reflects the “local” density of states in the final state, which 1s
enhanced for emission and suppressed for absorption (the electron Green‘s function
in presence of the static potential is §,(7) -~ 1/7In7).

Of course, the expressions (3},(4) give also the exponent for the Orthogonality
Catastrophe !® (after substitution ¢ — N =number of particles). [t is noteworthy
that, for a magnetic impurity the parquet problem should be of logz-type and
the Kondo temperature is given by Tx ~ Wexp(—\/ﬁ/—'—/?) (J - exchange, and
J < W).
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Fig.2. The schematic time "evolution” of the core hole Green's function. The region A is governed
by the relaxation of high-energy degrees of freedom. The region B corresponds to the intermediate
asymptotics (4) and the region C - to the potential independent asymptotics (5), which breaks
down in the region D.

An additional motivation for this work was the intention to build a simple,
exactly solvable, example in which the type of the singularity in the overlap
integral is different from the usual log-one, as it happens in the Luttinger Liquid
1. We have seen that in the case of the Van Hove singularity the asymptotic
indeed changes, but only for the intermediate ¢ and the true limit ¢ — oo is
governed by the usual log. Whether or not a similar scenario holds also for the
Luttinger Liquid case remaines yet unclear.

I am grateful to A.Joselevich and K.Schonhammer for many discussions and to
S.Brazovskii and P.Noziéres for the discussion. I am thankful to the A.v.Humboldt
Stiftung for support and to H.Cappelman for discussions and for a kind hospitality
at RWTH Aachen. ’
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