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The density of states. (DOS) produced by the vortices in the superconductors
with the lines of zeros in clectronic energy spectrum is calculated with application to
high temperature superconductors. DOS of the isolated vortex is o« Np¢-min{R, )},
where Np is the DOS of the normal metal, ¢ is the coherence length, A is the
penetration length, and R is the distance between the vortices. Only a small part
of the DOS results fron. the fermions, localized in the vortex core. Symmetry
of the isolated vortex line in superconductors with the gap corresponding to I';
representation is also discussed.

1. Introduction

Recent experiments with angle-resolved photoemission [1] revealed the existence
of lines of the gap nodes in high temperature superconductor Bi,Sr,CaCu,Os.
The position of the gap nodes allows us to identify the symmetry class of
superconductivity. The pairing occurs into the spin-singlet state described by the
one-dimensional I'; representation of the (approximate) tetragonal symmetry group
D4 of the CuO; planes. This superconducting state corresponds to the symmetry
class D4{D;) x T in the classification scheme of Ref.[2], where T is the time
inversion symmetry. The gap function of such unconventional superconductivity
has the general form

Alk,r) = ((k-8)* — (k- 5)°) f(K)¥(r) (1.1)

where the real function f(k) has the symmetry Dy of the normal metal; & and b
are unit vectors along the Cu-O bond directions (z and y) with z being along
the 4-fold symmetry axis. The complex scalar ¥(r) is the order parameter, which
depends on the coordinate r of the center of mass of Cooper pair. Though the
complete form of the gap function can be found only from the microscopic theory,
the. important property of its symmetry - the position of the gap.nodes - does
not depend on details of the system. The energy of the Bogoliubov excitations,

E(k) = e (k) + [ak)]® (1.2)
is zero on the four lines kn(k.) (n=1,2,3,4) defined by equations k-a=+4k-b
e(k)=0.

The presence of the lines of nodes influences the low-temperature properties of
superconductor, in particular this produces the power-law temperature dependence
of the penetration length, observed in YBa;Cu3O; - another superconductor with
CuO; planes [3]. Here we consider the effect of nodes on the electronic properties
of the vortex lines in Bi;Sr;CaCu;0g and calculate the DOS in a mixed state of
superconductor under magnetic field.
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2. DOS of the fermions localized in the vortex core

In conventional superconductors (without gap nodes) the DOS, N(0) « Np&?,
¢ nes from the branch of localized fermions with low energy [4]. According
to genei~! topological property, such anomalous branch which crosses zero as a
function of impact parameter should exist also for vortices in case of unconventional
pairing [5]. So let us start with the DOS which comes from the localized fermions
occupying the anomalous branch.

The Bogoliubov Hamiltonian for the fermions with given spin projection is 2x?2
matrix

H = 73¢(k) + 71 ReA(k, ) — 72 ImA(k,x) . (2.1)

As will be seen below the main contribution into the DOS comes from the vicinity
of the gap nodes and outside the vortex core. If the azimuthal angle a of k
is close to an=%(1+2n), the gap function outside the core of the vortex with
winding number 1 has the following general form:

Ak, r) = Fa(k:) - (k — ka(ks))e? (2.2)

with F,(k.) || £ x ko and ¢ being the azimuthal angle of r. The energy spectrum
of electrons in the normal metal is

e(k) ~ —ivr(ka) - V = (=i)v(k.)(cos &n Vs + sin an Vy) (2.3)

Here only the gap slope at the node, v(k;) = |¥n(k:)|, and the transverse component
of the Fermi-velocity at the nodes, v(k.)=|vrpi(kn)|, are defined by the details
of the system and can be considered as phenomenological parameters.

Let us introduce new coordinate and momentum variables

G=r-kny , T=T 3 , ke=(k—Kka) kny , ky=(k—kn) 9 ,

where ky 1 =Kkni1/|knyi| are the unit vectors in the direction of the gap nodes in
a — b plane; 4, =7./|7| are the unit vectors in the perpendicular directions, 7 is
thus the impact parameter. Then for small impact parameter

l‘dl

€' ~ et~ (sign(z) — i

), (2.4)
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and the Hamiltonian is:

H=H® + HY

H® = _i#30(k, ) Vs + kyv(k;)(cos ani + sin a.72)sign()

|‘Qc

HW = l.cy'y(k,)(cos ap T2 — sin o, 71)

‘ (2.5)

The Hamiltonian H(®) has a zero eigen value with the localized eigen function:

&
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v(k.)
2v(k.)

and from the first order in perturbation H(Y) one obtains the spectrum of the
anomalous branch of localized fermions:

W) siy L 206)

vO() = 1k o

1- sign(l?:,,)(cos anfy — sinapfy)

(k) ;
u(k)

Here we used an estimate vy(k.)/v(k.) ~ (€kr)~'. The spectrum crosses zero at
7=0 and in addition it touches zero at k, =0. However it should be taken into
account that the Eq.(2.7) is valid if the effective range of integration in Eq.(2.7)
does not exceed the intervotex distance R or the penetration length A. This gives
the condition for the angles at which the spectrum (2.7) does hold:

~ 25527 In=f . (27
Yy

v(k,;) £
~k . 2.8
v(k;)min{R, A} Fmin{R,)\} (2:8)
Below the limit v(k,)/(v(k.)min{R, A\}) the states are delocalized.
The anomalous branch of localized fermions gives the following contribution to
the DOS:

_ [ dk, dj [ dk, dk, (
NIOC(O) / 27r / 7‘_ k’yyk )) 271' 7 ,/27rk21n kF/'k I)

(2.9)
The integral over k, diverges at small k, and the constraints in Eq.(2.8) give the
following esimate for contribution of localized states:

kr > |Eyl >

min{ R, A}

Nloc(O) ~ 5

(2.10)

min{R, A} 2 .
In(min{R, 7}/€) | 2mv(kz) Npg - min{R, A}/In
3. DOS of delocalized fermions
The divergency of the density of the localized states at small angles, i.e. at the
edge of the continuum, means that the main contribution into DOS comes from
the delocalized states. For these states onme can use the semiclassical approach in
which the local energy is Deppler shifted by the local superfluid velocity v,:

Nietoc(0) =2/(“(2”1%/d2r S(E(k,r) + mevEr-v,) (3.1

where m, is the mass of electron. The main contribution into the DOS again
comes from the vicinity of the gap nodes in the momentum space and from the
region far outside the vortex core in the real space:

Nietoc(0) = 3Z/dk dk, o de dr 8§(y/€? + k2v2(k.) + mevr(kn) - v,) =
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dk, N
=/m2/d2T|meV, 'kn_Ll B (32)

For the isolated vortex the superfluid velocity at the distance { < r < min{R, A}
is v, =(k/2m.)(¢/r), as a result the space integral is divergent at large distances:

0 5 dk min{R. A} 13
Nyeloc = —_— dr ~ Npé -min{R, A . 3.3)
del ( ) / 7(2"/(1(3;) /5. " F€ ln{ } ( )

This term does not contain the logarithm in denominator and thus exceeds the
density of localized states in Eq.(2.10).

For the vortex lattice in the magnetic field region H. > H > H: the
intervortex distance is R~ {y/H.2/H < A. The DOS averaged over the vortices is
thus

N(0)= KNp (3.4)

Hc2
where the factor K is of order unity and, according to Eq.(3.2), is defined by the
vortex lattice structure in the coordinate space and by the slope of the gap near
the gap node in the momentum space.
4. Symmetry of the vortex line in D4(Dz) x T superconductor

Finally we discuss the symmetry of the isolated vortex in the superconductor
of class D4(D2) x T. According to Ref.[0] the elements of the maximal symmetry
group of the vortex line can be found from the asymptote of the gap function far
from the vortex core

Ak, r) = (k2 - E2)f(k)e*® . (4.1)

8 elements of symmetry of this function form the group D4(E):

Dy(E) =

=(E, Cre'™, CrM2™/2 cy™l%e= /2 CIT, Cre'™T, CI,,e™’T, CI_ e *"/*T),
(4.2)
where C? is the rotation about axis i by angle «, This group is isomorphic to
the D4 group; for the physical quantities, such as |A(k,r)|?, which are gauge
invariant and invariant under time inversion, this group coincides with initial D,
group of CuO; planes.
In conventional superconductors with D4 group the symmetry of the vortex
with asymptote f(k)e'® is similar but not the same:

Dy(E) =
=(E, Cre'™, Crl2e~*/2 c;m/%™/2 CIT, Cre™T, CI,,e"’T, CI_e"/*T),
(4.3)
and Eq.(4.2) characterizes the symmetry of the vortex with an opposite winding
number, ie. with asymptote f(k)e *#. This leads to two consequences.

1) The core of the vortex in D4(D;) x T state should contain all the possible
terms consistent with Eq.(4.2), and in particular it contains the amplitude of
conventional (s-wave) pairing with inverse circulation of superfluid velocity, such
as:
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A,(k,r) = f(k)|¥,(r)le”*® . (4.4)

Due to this correction the total gap function has no lines of gap nodes within
the core. This is not surprising since as distinct from the point zeros the lines of
zeroes are topologically unstable [7]. This however does not change the result for
DOS, since it comes mostly from the region outside the core.

2) There is incompatibility between the symmetry and topology when the
vortex line punctures the interface between the conventional and unconventional
superconductors. The topology requires that the winding number of the vortex
is the same on both sides of the interface. On the other hand if the symmetry
D4(E) is conserved, the vortices on two sides of interface should have opposite
winding numbers. The topology is however more important and therefore the
symmetry should be broken. In particular the rotation C:/Z, which is combined
with different phase factors in Eqs.(4.2) and (4.3), is no more the element of
symmetry. Thus the rotational symmetry about 4-fold axis is broken near the
interface.

5. Conclusion

While in the mixed state of conventional superconductors the electronic DOS,
N(0) x NpH/H_3, comes from the low-energy states localized in the vortex cores,
in the superconductors with lines of gap nodes the DOS, N0) « Np\/H/H_,,
comes mostly from the continuous spectrum, concentrated in the vicinity of the
gap nodes and outside the vortex core region.

I thank M.E. Zhitomirsky for discussions.
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