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Dynamic fluctuation phenomena in free standing soap films are investigated.
It is shown that the squeezing mode {where the water is pumped back and forth)
induces divergeut ab the intermediate scales coniributions to kinetic coefficients
{viscosity and diffusion), leading to anomalous scaling behavior of the coefficients.
The corresponding exponents are calculated using RG-methods in the one-loop
spproximation. They are €/19 and 18¢/19, where ¢ =4—d and d is the dimensionality
of the space {the physical value being d=2). The role of bending fHuctuations is
aino discussed.

We will consider dynamics of thin lquid films whichk may be prepared by
using special dopes to conventional soap films. Such films have been investigated
experimentally (muainly using a light scattering methodic) for thicknesses h in the
region 107 — 10*AT1].

As was demonstrated by iwe authors of this paper (EK. and V.L.) [2,
3} thermal flucivation eflects are relevani in the long wavelength dynamics of
free suspended films. Since for soap films the thickness h > am {6, is the
molecular size) the effects investigated in [2, 3] are important on very large scales.
Nevertheless for scap films the dynamics on intermediate scales (exceeding i but
not very large) is also sensitive to fluctuation effects. The peculiarity of these
cffects in soap films is related te the fact that the filin is at least a two-component
sclution and therefore there is the sco-called squeezing mode {1, 4] where the water
15 purnped back and forth through a slab with thickness h. The dispersion law
of the squeezing mode in the linear approximation was found in [4], in the region
gh € 1 (¢ is the wave vecior) if is

w=—i§qz(aq2 + oy) . (H

Herte ¢ 1s the kinetic coefficient {which may be called a diffusion one} and «, oy
are the modules characterizing the elasticity of the soap film.

Since a soap film consisis of a volume part containing water and of surface
layers where soap molecules are concentrated, the coefficients entering (1) can be
estimated through the parameters of the layers and water. Namely, ¢ ~ (nh)™? (n
is the viscosity of water), « ~ yh? {y is the surface tension of the soap layers)
aud a; =d’V/dh® where V(A) is the interaction potential between the soap layers
4]. Note that we assume a natural estimation £, ~ vy, where e, = —n,8y/0n, and
n, is the surface concentration of the soap molecules. The interaction between the
soap layers is mainly associated with the Van der Waals forces which give [3]

V=62/yh% (2)

where the parameter © has the dimension of the energy. Therefore there exists
the region of wave vectors

gh > ©/yR* | 3)
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where we may neglect oy in the dispersion law (l). We see that the squeezing
mode is a soft one which explains the essential role of the squeezing fluctuations
in. the dynamics of soap films.

To investigate the dynamic fluctuation effects we will utilize a diagram technique
of the type first developed by Wyld [6] for the problem of hydrodynamical
turbulence and extended on a wide class of physical systems by Martin, Siggia
and Rose [7]. A textbook description of the diagram technique can be found
in the book by Ma [8] (see also the monograph (3]). Note that this diagram
technique is a classical limit of the Keidysh diagram technique [9] applicable to
any physical system. As was demonstrated by de Dominicis [10] and Janssen
[11] (see also [12] and [13]) Wyld’s diagrammatic technique is generated by the
conventional quantum field theory fashion starting from an effective action I. The
corresponding methods can be found in the monograph by Popov [14].

To use Wyld diagram technique we should . first derive a system of nonlinear
equations. dsscribing a soap film. In comparison with the system of equations of a
freely suspended film constructed in {2, 3] it includes the equation for the variable
Y determining the 2d density of the water in the film. It can be derived as the
equation for the concentration in a two-component solutions. After elimination of
all hard degrees of freedom we come to the closed system of nonlinear equations
for the variable ¢ and the transversal with respect to a wave vector component
of the velocity v, .

This system enables us to construct the effective action I for the mentioned
degrees of freedom. In the main approximation it has the form

I= / dtdz dy (p,p(azﬁ/b’:‘, +v1 V) +(aVipy V2 + iT¢(Vpy )2
—aVppaVah Ve + mVapsVavs + iT"]l(vaPﬁ)z) ) (4)

where T is the temperature and p, and p, are supplementary Bose fields (3,
7, 10, 11] conjugated to the fields 4 and v,. Here we have implied that in
equilibrium the film is arranged along the X —Y plane, all variables characterizing
the film are believed to be functions of the time ¢ and coordinates z, y and we
have omitted a aj-proportional term in (4).

It is easy to find from the second-order part of (4) the bare expressions for
the correlation functions

2T¢q?

Dy = (Y)u,g = ST i Calgs ()
27 9aq

Dap = (vatp)eg = —5(8ap = Z57) - (6)

Fluctuation corrections to the bare values (5, 6) are determined by the interaction
terin

PyviVY —aVep, Va9 Vgy (7)

of (4) which generates two third-order vertices in diagrams. Note that both
vertices are originated from the reactive part of the dynamic equations whereas
we are interesting in fluctuation contributions to the kinetic coefficients ¢ and 7;.
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\\ - Fig. 1. The first contributions to the polariza-
tion operator.

The one-loop contributions to polarization operators are determined by the
diagrams presented in Fig.l where a solid line designates the correlation function
Dy, a dashed line designates the correlation function Dgg, black and white circles
designate the third order vertices entering {7). Comparing these contributions with
(5, 6) we conclude that the corrections

T
Caqz .

1o the coeflicients { and 7; arise. Both contributions diverge at large scales and
exceeds the bare values at wave vectors

7% (aZ;h)l/z ‘ (9)

In this region we cannot restrict ourselves only to the first corrections and should
take into account higher-order contributions to the self-energy functions. This is
the same situation as near a second-order phase transition and therefore we can
expect a scaling behavior of the coeflicients characterizing the “dressed” correlation
functions (5, 0). Let us introduce scaling exponents A, and A, which determine
the long wavelength behavior of the coefficients ( and m

(8)

C bl y ” —
1 111 =
f ‘1771‘1 ' f

Cocg™ @, mocgThr. (10)

To estimate the values of these exponents one can use renormalization-group
(RG) methods. The marginal dimension for the effective action (4) is 1+ 4 (tine
+ 4d space) It is not very difficult to check that the effective action (4) is
renormalizable and that there are no corrections to the coefficients T' and o which
is accounted for by the fluctuation-dissipation theorem and by the fact that o
is the static module (in statics fluctuations are not relevant). In the dimension
d=4 — ¢ the one-loop RG equations for the coefficients { and 7, are

d 1
T=(d-Dg¢,  H=——mgm . , (11)

Here
g - —€
(2m)4¢milad
is an invariant charge, S; is the area of the d-dimensional sphere, L=In(A/k), A
is a cutoff. For e « 1 the fixed point of (11) is

*

g =

Sl

Thus the exponents determined by (11} are
A =18¢/19, A, =¢/19 . (12)
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For the two-dimensional soap films e = 2 which is not a small parameter.
Nevertheless we may hope that (12) give a reasonable estimation for the exponents
A, and A at e€=2. Therefore we may expect that the viscosity coeflicient m;
only weakly depends on the scale whereas { diverges with the exponent close to 2
and therefore the dispersion law for the squeezing mode (with the a;-proportional
term neglected!) only slightly differs from a diffusion one. Let us note that the
behavior of the second viscosity coefficient 77 is determined by the same exponent
A, and therefore the attenuation of the longitudinal sound will be proportional to
w2 B

Let us give the general picture of fiuctuation effects in the soap films. At
shorfest scales the dispersion laws of all modes are determined by the linear
dynamic equations. At scales determined by (3), (9) squeezing fluctuations lead
to the scaling behavior discussed above.

In¢

Inm
//

- 1
()
¢ a 1' b 4

¢ .
) T d Fig. 2. The schematical dependence of the

ineti flicients d scales: a
3 (a&h) In (L’lz) In (M} Kinetic coefficients m_and ¢ on )

— bare values, b) scaling with A., Ay, ¢
2 2 ! ¢ ]
Th 9 T’] m O(q--I/Z, d) m (xq—l/S'

At larger scales a new phenomenon should be taken into account. A feature of
a freely suspended film is the possibility of its bending motion. Acoustic oscilla-
tions associated with this bending motion have an anomalously weak attenuation.
Namely, in the linear approximation the dispersion law of the bending mode is

w=tc,q —ipgt (13)

where w is the frequency and q is the wave vector. The mode with the dispersion
law (13) may be called the shear sound, ¢, being the velocity of the sound. The
viscous damping of the sound proportional to g¢® is absent due to the rotational
invariance of the film [2, 3]. For the soap film the coefficients in (13) are of the
order of [4]

Cs ~('Y/ph)1/2r ,U’N’Yhs/n?

where p is the 3d density of the water and 7n is its viscosiiy. Besides the
linear attenuation ug* figuring in (13) the nonlinear fluctuation contribution to
the attenuation of the shear sound B¢ exists [2, 3]. Here B ~ T/(p2c,) and p;
is the surface mass density of the film (for the soap film p; ~ ph). Comparing
these contributions {ox ¢* and o ¢®) we conclude that the fluctuation attenuation

4" 675



become essential at wave vectors
gh ~ (T/vR*)(7* [rph) 2 (14)

both combinations in brackets being small parameters.

Bending fluctuations (as well as squeezing ones) give anomalous contributions
to the viscosity coefficients. If gh exceeds the value (14) the contributions to 7y
and 7, are of the order of T/(uc,q)'/?. For gh smaller than the scale (14) they
are of the order of T/B%/3¢,q'/3. Note that the above contributions to 7; and 7,
can be neglected in the region (3) since really © does not exceed T [5]. The
schematic dependence of 77 and ¢ on scales is depicted in Fig.2.
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