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Brane-like vertex operators, defining backgrounds with the ghost-matter mixing in NSR superstring theory,
play an important role in a world-sheet formulation of D-branes and M theory, being creation operators for
extended objects in the second quantized formalism. In this paper we show that dilaton’s beta function in ghost-
matter mixing backgrounds becomes stochastic. The renormalization group (RG) equations in ghost-matter
mixing backgrounds lead to non-Markovian Fokker-Planck equations which solutions describe superstrings in
curved space-times with brane-like metrics. We show that Feigenbaum universality constant § = 4,669 ...
describing transitions from order to chaos in a huge variety of dynamical systems, appears analytically in these
RG equations. We find that the appearance of this constant is related to the scaling of relative space-time
curvatures at fixed points of the RG flow. In this picture the fixed points correspond to the period doubling of

Feigenbaum iterational schemes.

PACS: 74.50.+r, 74.80.Fp

Superstring theory is our current hope to put gravity
in a Prokrust’s bed of quantum mechanics. In spite of
all the spectacular progress in the last quarter of the
century [1] the full structure and underlying symme-
tries of the theory have yet to be unveiled. One of the
most striking features of String theory is a deep relation
between renormalization group (RG) flows on a world
sheet and an evolution in a target space. Critical points
of these RG flows, described by 2D conformal field the-
ories (CFT), determine equations of motion in a target
space. The structure of these equations is determined
by the world sheet correlation functions of the appropri-
ate vertex operators in respective CFT [2]. The confor-
mal field theory description of strings in curved back-
grounds, such as of strings in the presence of branes, as
well as the underlying CFT of strongly coupled strings is
much harder a problem to tackle, in particular because
the adequate knowledge of quantum degrees of freedom
of M-theory and non-perturbative strings is still lack-
ing. Some time ago, we have proposed the formalism
[3—6] that describes the non-perturbative dynamics of
solitons in string and M-theory in terms of a special
class of vertex operators, called brane-like states. The
crucial distinction of these vertex operators from usual
one (such as a photon or a graviton) is that they exist
at nonzero ghost pictures only. The simplest example
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of these vertices in the closed string case is given by
(before integration over the world-sheet):

Vi (g) = e300y, .y, e e (2, 2),

Va2 (q) = cOxeX 2%, ..y iy €% (2, 2),

Vi (g) = €8P, o tpiy e €% (2,2) +
+b—c ghosts, a=0,..,3; t; =4,..9. (1)

It is important that the discrete picture-changing
gauge symmetry is broken for such operators and their
superconformal ghost dependence cannot be removed
by any picture-changing transformation. We shall refer
to this property of the brane-like vertices as the ghost-
matter mixing. The crucial property of these special
vertex operators is that they do not correspond to any
perturbative string excitation but describe the nonper-
turbative dynamics of extended solitonic objects, such
as D-branes.

In [6] we have shown that the low-energy effective
action of the sigma-model with the brane-like states is
given by the DBI action for D-branes. From the world
sheet point of view this means that the insertion of ver-
tices with the ghost-matter mixing makes the deform
CFT describing strings in flat space-time and it flows to
a new fixed point, corresponding to the CFT of strings
in a curved background induced by D-branes. In this
paper we shall further investigate RG flows in the ghost-
matter mixing backgrounds. It appears that properties
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of these RG flows are stunningly different from the usual
ones. We found that ghost-matter mixing adds to RG
flow operator-valued stochastic terms. Even more in-
triguing is the emergence of universal constant in the RG
equations which with accuracy less than 0.5% is noth-
ing but the logarithm of the famous Feigenbaum con-
stant § = 4.669 [7]. This coincidence is not accidental
but reflects remarkable and new relations between super-
strings, chaos, gravity and stochastic processes which is
the subject of this Letter.

The crucial property of world sheet conformal beta-
functions (e.g. of a dilaton) in ghost-matter mixing
backgrounds is the presence of stochastic terms in the
RG equations. One specific property of the brane-like
states, is that their OPE algebra is picture-dependent.
This picture dependence leads to non-deterministic sto-
chastic terms in the dilaton’s beta-function. Namely,
consider the NSR sigma model in D = 10 perturbed by
the dilaton and the ghost-matter mixing vertex (1). The
generating functional for this model is

Z(p,A) = [ DXD+vD|ghosts] : f(T):: f(T): x
X exp {—SNSR + fd“q/\ fdsz5 q, 2, 2) +
+ [ dpp(p) [ PwV ™ p(p, w, @)} (2)

Here

1 2
f(0) = o= D T2t

is the measure function of picture-changing operator,
: T :=: e®G : with G = G, + Ggp, being the full matter
+ ghost world sheet supercurrent. The dilaton vertex
operator can be taken at any negative picture. It is con-
venient to take V,, at picture —2 (both left and right) as
in this case the dilaton vertex operator is given by

qu(P) = /dzze_2¢_2$6XmaXn(nmn - kmkn - kn’:’m)

Let us expand the generating functional (2) up to the
third order of A and the second order of ¢, which sym-
bolically can be written as (keeping only relevant terms)

Z =< . + ApVV,, + N2 V5V +

+ @V, V, + MBVsVsVs + ... > . (3)
To determine the UV divergences in the partition func-
tion (2), relevant to the dilaton’s beta-function, one has
to point out the relevant singular terms in the OPE al-

gebra of the dilaton and V5. In the on-shell limit, the
relevant terms in the operator algebra are given by:

Vs(a) (wlawl;ql)vs(b) (w2, W25 g2) ~

N C[ﬂl|b](C_I1,Q2)V<£m)(Q1+Q2)
|21 — 22|

+ .., a,b=+1,-3, (4)

where

Ci-s-31(q1, @) ~ (@1q2) (1 + (q1 + ¢2)),
Crosy(a, @) ~ (a1a2),
Crspy(ar, @2) ~ (@g2)(1 — (@1 + 2)?). (5)

Next, one has to point out the picture changing rules for
the left part of the V5-operator, in order to specify how
it is acted on by : f(I") : The picture changing transfor-
mation rules for the Vi operators (1) can be written in
the form

T Vi (0) = o Va0 (),
Qilj] = Am|n] = Afnjm] = 1,
®alj] = Ualt] = ¥sla] = 0,
Afijm] = Os|m] =1+ %,
§,t = —00,.... -3, —2;
a,b=-1,0;, m,n=1,2,... (6)

_4; 7’,.7:

In the beta-function calculations, when the vertex oper-
ators are taken slightly off-shell, the following identities
are useful:

%4m]Clmin] = Clijn}s Qfijm)Clmlj) = Caz- (7)

Finally, using the fact that picture changing opera-
tors form the polynomial ring:

=: I‘"‘I‘" . +[QBRST7 ] (8)

the action of the : I' : operator on the vertex operators
inside the functional integral can be expressed as:

- .mtn

< T (w)Vi(z1)....Vizn) >=
ki+..4+kn_1=n n'
= N ’
Z kl!...kN_l!(n—kl— _kN—l)! %

k1,.-.kn=0

x <:T % Vi(z1).. : T *v-1 Vv (2nv_1)
P A Sl At VN(ZN) > (9)

i.e. the correlator does not depend on w. The factor
of N~™ in (9) insures the correct normalization of am-
plitudes in the picture-independent case. Using the rela-
tions (6)—(9) we are finally in the position to start evalu-
ating the beta-function. The first contribution of interest
to the beta-function comes from the A\2-term, bilinear in
the Vj-operator. At a given picture level n this term
leads to the following divergence in the order of A\2:

1 - -
E/dzwldzwz <:Tmte V5( 3)(w1)I/5( 3)('wQ)... >=

_ g-n-— 7n+6 (n+6)!
Zk' n+6—k)!

Ot amiai] / € < VIV (,E)... > xlogh,  (10)

(o 7. 7) 3]C[k 3|n+3—k] X
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where £ = 1/2(w; + ws),n = 1/2(w; — w2) and log A =
=/ A% is the log of the world sheet UV cutoff. For the
sake of brevity we suppress the momentum dependence
of fields, vertices and structure constants here and be-
low. This divergence is removed by renormalizing the
dilaton field as

n+6 n+6'

pore- ZT” 72k'n+6 %)!

X C[k—3|n+3—k]a[—3\n+3—k]>\ log A. (11)

In the absence of picture-dependence the sum over k
would have been reduced to %C)\Z log A for each picture,
as it should be in the standard case when ghost-matter
mixing is absent.

As a result of the dilaton’s RG flow, the Ay cross-
term is renormalized by A® logarithmic divergence:

Q[_3|g—3] X

¢ = ¢ — constAZlog A,
MpVsV, = ApVs V., — constA*logAVsV,. (12)

Using the identities (7) relating a and C after some
straightforward transformations we can cast the renor-
malization of the Ap-term under the flow (11) as

— MlogAC_3-zja(-3) X
X /dzszéfs)(wl)Vs(nM)(wz) X

oo k=n+6;l=n+5

DD

n=0 k,l=0

(n+5)!(n + 6)!
Kl (n+5-0)(n+6—Fk)’

(13)

where in the sum over k and / one must have ak#2, 3, n+
+3,n + 6; I#£n + 2,n + 3. This gives the renormaliza-
tion of the Ay cross-term under the RG flow (11) of
the dilaton field in the ghost-matter mixing case. The
other contribution of the same order of A3 to the dilaton
beta-function comes from the OPE singularities inside
the A3-term itself, appearing in the expansion (3) of the
partition function. After simple calculations we get:
k+l=n+9

+9)!
- 31 A n—9 n
’\ & 23 MZO Kln+9 k1)

X C/d2w1/d2w2 < qu(*ﬁ)(wl)l/},("w)(wg)... >;

3C = Clr—3)1-3][—3|k—3] ¥[—3|n+6—k—1]¥[3|n+6] T
+ Clr—3|n+6—k—1]O[—3/k—3]¥[—3[1—3] ¥[—3|n+6] T

+ Clk—3/n+6— k13131 3|n+6—k 1 3|nt6]- (14)
Again, it is easy to see that in the absence of

the ghost-matter mixing (@ = 1, all C are picture-
independent) this contribution would sum up to

1
50)\3 logA/dzwl/dzsz(wl,wl)V(wz,wz) (15)
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precisely cancelling the divergence of the same \*-type,
originating from the renormalization of the Ay cross term
under the flow. In the picture-independent case this in-
sures that the renormalization (11) of the dilaton field
under the flow does not bring about any additional sin-
gularities from higher order terms, such as the cubic one
and the A¢ cross-term. In particular, this guarantees
that terms of the type

~CA3logA/ dPPwVs(w,w) (16)
A

never appear in the dilaton or other perturbative close
string field beta-functions in the picture-independent
case. On the contrary, should the terms of this type
appear in the beta-function, that would imply that the
RG equations become stochastic, since from the point
of view of the space-time fields, world sheet operator
[y PwVs(w, @) is a stochastic random variable, with
the cutoff parameter A playing the role of the stochastic
time. In this case, the RG equations have the form of
non-Markovian Langevin equations where the memory
of the noise is determined by the world sheet correlations
of the V5-operators. This exactly is what happens in the
ghost-matter mixing backgrounds, due to the OPE pic-
ture dependence. To get the total flow on the A3 level,
one has to subtract the sum (14) from (12) using the
identities (7). We obtain

=+ GC[,3|,3]a[,3‘1]/\3logA / dszg(_3)(w,1D)(17)
where

o=1- i[(n +4)%(n +5)3(n +6)272" 712 4

n=0
(n+8)(n;69)(n+13)(3)n+9 (n+4)2(n+5) +
+(1/2)(n+5)%(n +6))27 "% = 1.534. (18)

Therefore the resulting beta-function equations for the
dilaton in the ghost-matter mixing background gives
(with the momentum dependence restored):

%3 - _516;;) +oC(p) / d*q(g)n,
k k+p k—p
Z/d2stff3)(w,q), (19)
A

with 0 = 1.534... There are other examples of vertex
operators with ghost-matter mixing, and they also lead
to stochastic terms in the beta-function of the dilaton.
In particular, we have also considered the dilaton field
in the background of closed string operators of higher
ghost cohomologies:
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Wy ~ / d2ze*4¢*5’ax(ml...axm3) X
— ., L
X ’lpmeelk XGml...m5mea (20)

where the G-tensor is symmetric and traceless in
my,...,ms (round brackets imply the symmetrization in
space-time indices) and k* is transversely to my, ..., mg
directions and

Us ~ / d*ze 4 99X (1, 0K my) X
- L
X ¢m5¢m6¢m761k XGml...m-,- (21)

We have found that, even though the OPE details are
quite different in each case, nevertheless in the end one
always gets the beta-function equations in the form (19).
The crucial point is that the o factor, reflecting the sto-
chasticity of the beta-function, appears to be universal
and its value is independent on details of the ghost-
matter mixing. Namely, we have found [8] o = 1.541...
for the Wjy insertion and o = 1.538... for the of Us case.
What is even more remarkable, can easily check that in
fact

o =1Ing, (22)

where § = 4.669... is the famous Feigenbaum universal-
ity constant describing the universal scaling of the iter-
ation parameter in a huge variety of dynamical systems
under bifurcations and transitions from order to chaos

[7].

To understand the physical meaning behind the ap-
pearance of the Feigenbaum constant in (19), it is neces-
sary to analyze the non-Markovian Fokker-Planck (FP)
equation describing the stochastic process which can be
straightforwardly derived from the Langevin equation
(19). We shall present here FP equation for scaling func-
tions A(q) = Ao/q*

OPrp(p,7) _
(97' N

. 5S,
/d“p/d q&p(p (690(% Prp(p, 7)) +

+02/\6/d4k1/d4k2/d4 /dq/d§

Xa_ 3|1C [-3]— 3]( B p)a 3|1C [-3]— 3](k22+q)
) )
* éw(p,T)GS(g’T)JsO(q,é)P p(e:7), (24)

where 7 = log A now plays the role of the stochastic time
variable. The Green’s function G5 (¢, 7, p, q) is defined by
the cutoff dependence of the two-point correlator of the
Vs-vertices:

G5(§,r):/A d2z/A L)z —w|45(p+q) =

14+ef-7
= (1 _ eg_-,-)25(p+q)7

We shall look for the anzats solving this equation in the
form (for more details see [3] and references therein):

& =log A1, T =log As. (24)

Ppp(p,7) = exp[~Hapm(p,7)] =
= expl- [ dplg(n)@r0) + IOF Y. (29
Substituting it into (23) we find that (25) solves the FP

equation provided that the functions f(7) and g(7) sat-
isfy the following differential equations:

DY
g’()+4g()+ 2":0,
A
1 1 L an 1
+—402Ag(1—§))f (= F)(E + a3e) = 1
(26)

The first equation is elementary, its solution is given by

2)\6
=20 _1), r<o. (27)
The second equation on f(7) can be reduced to the
Bessel type equation by substituting

F() = p(r)e > +1/0%28.
The solution is given by
F(r) =1+0°X0e (L + Jy/ora(1/0X3))  (28)

where J; /oA3(7/0A3) is the Bessel’s function. In terms
of the 7 coordinate, the stochastic process, describing the
RG flow in ghost-matter mixing backgrounds, evolves in
the direction of 7 = —oo. Next, let us study the behav-
iour of the Hamiltonian (25), (27), (28) in the conformal
limit of 7 = —oo. In this limit the exponents become
very large and moreover
1

Ji/aX5( )\3) O(F
and after rescaling the Hamiltonian reduces to
R2/d4p{e T ) +p e —27 2} (30)

which is just the ADM Hamiltonian for the AdS; grav-
ity in the temporal gauge [9] it is easy to see that the A§
parameter has the meaning of the square of the radius
R? of the metric.

Let us now analyze in more details the solution (25),
(27), (28) of the non-Markovian FP equation, leading to
the new space geometry. Let us note first of all that the
limit Ag — 0 is not the same as A = 0 (ghost-matter
mixing absent). The RG flow described by the effective

) <<1 (29)
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metric (27), (28) must be single-valued; since Bessel’s
functions at zero argument are single-valued for the inte-
ger orders only, this leads to the quantization condition:

(eA3)~' =N. (31)
Moreover, since J, (1) ~ 7 as 7 — 0, the absence of un-

physical singularities at 7 = 0 requires NV to be positive.
The quantization condition (31) implies that

((Mo)n) 3= No, ePolv’ =gV (32)
implying the iteration law:
e(AO)I_Vi—l —_ e(AO)I_\I3

ePo)n® _ o(o)31y

=5 (33)

with § being the Feigenbaum number.

Therefore the Feigenbaum iteration rule (33) deter-
mines the scaling of characteristic curvatures of geome-
tries emerging at the fixed points of the stochastic renor-
malization group. The role of iteration parameter char-
acterizing the bifurcations is played by ~ e~1/%*
ishing at R = 0 and being finite at large R, as it should
be the case for the scaling parameter of the Feigenbaum
iteration scheme.

, van-

From the quantization condition (31) it is clear
that the stochastic renormalization group (19) has fixed
points exists for 0 < A9 < 1, i.e. correspond to large cur-
vatures. Moreover the period doublings that lead to the
transition to chaos corresponds to N — oo, i.e. A\g = 0,
which is a singularity. So we reached an amazing conclu-
sion that precisely near singularity our RG flow becomes
chaotic. It is tempting to assume that this may be the
mechanism which can solve the problem of singularities
in string theory.

In this Letter we discussed how matter-ghost mixing
can radically modify the nature of the world sheet RG
flows and lead to the emergence of chaos near curvature
singularities. Here we analyzed only dilaton evolution,
but the similar picture can be obtained for other mass-
less fields, for example metric [8].

Amusingly, recently the chaotic behaviour of metric
was discussed in [10] (for earlier papers see [11] and ref-
erences therein) where the emergence of chaos in super-
gravity near cosmological singularity was demonstrated
in the presence of higher rank antisymmetric tensor
fields, i.e. R—R fields. It will be extremely interesting
to understand how chaos emerging during cosmological
evolution in supergravity can be related to the chaotic
nature of RG flows in underlying string theory in the
presence of the sources of the background R—R fields.

It is tempting to assume that the resolution of the
singularities problem is transition to chaos and emer-
gence of smooth distributions of fields, not restricted
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on-shell. One can imagine that curvature R is some new
“Reynolds” number in string theory and for large R one
have transition to chaotic behaviour in a similar fash-
ion like in hydrodynamics there is a transition from a
laminar to a turbulent flow. These ideas definitely need
further investigation.
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