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It is suggested to describe the structure of icosahedral quasicrystals as a result
of the dodecahedral arrangement of closest atoms, really observed in the AlLiCu,
AlMnSi, and AlFeCu alloys. New cubic approximants of icosahedral quasicrystals
are found. Unconventional projection scheme for construction of quasicrystals and
their crystal approximants is discussed.

After a remarkable progress in the understanding of general principles of qua-
sicrystalline structures 1’2, one of the basic questions seems to be still unresolved:
what is the local arrangement of atoms which leads to the global noncrystalline
symmetry of quasicrystals (icosahedral, decagonal, octagonal, etc.)? Earlier it was
widely believed that icosahedral symmetry of quasicrystals is a rtesult of icosahe-
dral local arrangement of twelve atoms around a central atom; however, z-ray
and neutron diffraction studies show that in real alloys only a minority of the
atoms has the icosahedral coordination; moreover, the center of the icosahedron
may be empty. Therefore, more sophisticated structure units are considered (like
the rhombic triacontahedron for AlLiCu and the Mackay icosahedron for AlMnSi),
which include about fifty (or even more) atoms. However, why these units are
stable and how they are growing is not clear yet.

In the present paper, we propose another local arrangement for the basic
structure motif in icosahedral quasicrystals. We suppose, that most of atoms
have the closest neighbours at the vertices of dodecahedra, and it is shown that
such motif may be found in the crystal approximants of AlMnSi and AlLiCu
quasicrystals; the latest available experimental data 3 give evidence for the same
arrangement in AlFeCu quasicrystals too. In this approach the positions with
icosahedral coordinations arise as the places of frustration where the dodecahedral
arrangement leads to contradiction; therefore it is not surprising that those positions
may be empty.

It is convenient to start with the consideration of the structure units in the
crystal approximants *; the reason is that in the approximants only those positions
can survive which are most favorable energetically. The analysis of the numerous
experimental data shows %% that at least four cubic approximants have been
observed in the AIMnSi alloys: < 2/1 > (MnSi structure), < 5/3 > (a-AlMnSi),
< 13/8 >, and < 34/21 > with the lattice constants 4.6 A, 12.6 A, 33.1 A, and
86.6 A, respectively. The cubic approximant is labelled by two Fibonacci numbers
< Foy1/F, >, if in this crystal the most intense pseudo-fivefold reflections have
the Miller indices {F; 11,0, F,}. The ratio of the lattice constants a,41 and a,
of two succeeding approximants, < Fyi2/Fny1 > and < Fnii/F, >, is close to
the golden mean 7 (r = (1 +\/§)/2= 1.618034...). To avoid confusion it should
be noted that there is another labelling scheme * in which a-AlMnSi crystal is
labelled < 1/1 > but in this case we have unnatural notation < 0/—1> for MnSi
crystal.

Let us consider the MnSi < 2/1 > approximant with the space group P2;3;
its unit cell contains 8 atoms in 4a positions z,z,z at the threefold axes: 4 Mn
and 4 Si. In crystallographic books it is referred to as B20 or FeSi-type structure
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and is found in many alloys: AIMnSi, CoGeSi, GeRu, HfSn, and others 7. In
the idealized structure of this approximant (Fig.la), z4 =1/(47) for A atoms (full
circles) and zp=1- 2z, for B atoms (empty circles).

Fig.l. The relationship between atomic arrangments in < 2/1 > (a) and < 1/1 > (b) cubic
approximants. In (a), atom | is at the cube center, whereas all other atoms arc on the cube
faces. The ratio of lattice constant is 7 but the rhombohedra, drawn at both figures and marked
by numbers, are equal

This structure is a periodic system of interpenetrating dodecahedra: each A
atom is surrounded by 7 B atoms positioned at 7 vertices of an ideal dodecahedron
and vice versa. Therefore, the A-B bonds are directed along the threefold < 111 >
and pseudo-threefold < 0l7% > directions. Next atomic shell contains 6 atoms
of the same sort as the central one; the A-A and B-B bonds are parallel to
the pseudo-twofold < 1772 > directions. The closest A-B distances are equal to
V3/(2r) whereas the closest A-A (or B-B) distances are slightly longer (v7!); thus
there is a rather compact cluster with threefold symmetry where the central atom
is surrounded by 13 atoms. Further atomic shells are distorted by the periodicity
and they should be analyzed in higher approximants.

Before the higher-order approximants, let us consider a relationship between
MnSi crystal and the lower-order approximant < 1/1 >. The latter is a cubic
crystal (Fig.1b) with Pm3m space group known as B2 or CsCl-type structure; its
lattice constant a; is 7 times smaller than a;; if A=B, it is a conventional becc
crystal with Im3m symmetry. It is ihtercsting that many alloys are known in .both
modifications, shown at Fig.l, with practically the same denmsity (AlPd, AlPt,
FeSi, OsSi, and others). The relationship between the two structures becomes
evident if we compare the rthombohedra drawn at both figures: those rhombohedra
are equal but they have different orientation relative to cubic axes. In other
words, we can say that inside the lower-order < 1/1 > approximant there is a
piece of the < 2/1 > approximant (8 atoms, a complete unit cell!).

Such relationship is a general property of approximants. For instance, in
one-dimensional case, the structure of the < F,,1/F, > approximant contains
the unit cell of the < Foi3/F,;; > approximant and even the unit cell of the
< Fny3/Fny2 > approximant. This gives us a way to construct higher order
approximants from the lower omes and to obtain a quasicrystal as a limit of
this process. Fortunately, this procedure applies in the three-dimensional case
too, but it is not a trivial job to find a larger unit cell inside another atomic
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structure because the symmetry axes may have different orientations as we can see
in Fig.l. Nevertheless, a direct computer search shows that the next Fibonacci
approximant, < 3/2 >, can be found inside the idealized MnSi structure (details
of this procedure will be published elsewhere). The cubic axes of the approximant
are directed parallel to the pseudo-twofold directions < 1772 > in MnSi and the
unit cell is 7 times lager than that of MnSi. The space group of this approximant
is Pa3 with 32 atoms per unit cel: 8 A atoms in 8¢ positions z,z,z and 24
B atoms in general 24d positions z,y,z, where the calculated values of atomic
coordinates are the following:

T4 = 1/(472), (zB,yB,2B) = (\/3, l,'r3)/(4T2).

Again, like in MnSi, the closest neighbours of each atom occupy vertices of
dodecahedra: 7 around each A atom and only 6 around each B atom. The
interesting feature is the occurrence of 8 holes in z,z,z positions (z=17/4) with
icosahedral coordination. If we try to continue the dodecahedral arrangement
inside these holes, any new atomic position appears too close to one of the old
positions. Therefore, such holes may be considered as the places of frustration for
the dodecahedral ordering. Surprisingly, the structure of AuzNaSi crystal is found
to be very close to the < 3/2 > approximaut: Na and Au atoms correspond to
A and B atoms respectively (see Table 1), whereas Si atoms are in the holes; to
my knowledge, this crystal has never been considered before as an approximant of
quasicrystals.

(1)

Atomic positions in the cubic approximants of different order

Labels and | Coordinates of atoms in a unit cell: 6-dim.
examples theoretical experimental positions
< 1/1 > FeSi | 0,0,0; 0.5,0.5,0.5 | 0,0,0; 0.5,0.5,0.5 | 000111
< 2/1 >,FeSi | 0.845,0.845,0.845 | 0.846,0.846,0.846 | 000111
MnSi, AIPt | 0.155,0.155,0.155 | 0.138,0.138,0.138 | 000000
<3/2> 0.095,0.095,0.095 | 0.097,0.097,0.097 | 000000
AusNaSi 0.214,0.095,0.405 | 0.226,0.133,0.408 | 100000
<5/3> 0.191,0.191,0.191 | 0.187,0.187,0.187 | 000000
AlsLizCu 0.000,0.118,0.191 | 0.000,0.094,0.154 | 100000
AuzNa,Sn 0.000,0.309,0.118 | 0.000,0.305,0.117 | 100001
AuyNajSi, 0.118,0.191,0.382 | 0.157,0.190,0.406 | 010000
0.427,0.000,0.500 | 0.404,0.000,0.500 | 021010
0.191,0.000,0.500 | 0.199,0.000,0.500 | 111000

As the next step, the unit cell of the < 5/3 > approximant can

be found

inside the < 3/2 > approximant; it is very popular structure exemplified by many
alloys. Similarly, it may be considered as the superpositions of the dodecahedral
clusters, like the one shown in Fig.la, which are centered at the (1,1,1)/(272%)
points. Again, there are the icosahedral holes in the 0,0,0 and the (1,7,0)/(272%)
positions (not shown in Table 1): the former is empty in AlsLizCu and is
occupied by Au in AuzNa,Sn, whereas the latter is occupied in all known alloys,
enforcing small shifts of neighbouring atoms. Perhaps because of those shifts
the dodecahedral local coordination was not earlier recognized in the AlzLizCu
approximant.

A more regular way to construct the approximants and quasicrystals is provided
by the strip-projection method 8. The dodecahedral arrangement of 7 atoms around
the central one can be described as a projection from a 6-dimensional cubic lattice
with one atom per unit cell, so that 6 basic vectors (100000),...,(000001) give
positions of the 6 surrounding atoms:
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An(72,1,0); 1,(0, 72, 1); An (1,0, )50 (=72, 1,0): 24 (0, =72, 1); A (1,0, -3, (2

where the common factor A, depends on the order m of the approximant. The
7th closest atom is a projection of (000111), whereas the next shell of 6 atoms
is projected from the points like (100010), eic.. After a proper choice of a
6-dimensional acceptance domain is made, all considered approximants and o-
AlMnSi can be obtained. Such projection scheme is unconventional: the basic
vectors (100000), ..., (000001) are projected on the threefold directions instead of
the fivefold. The conventional fivefold basic vectors are the linear combinations
of the threefold vectors given by equation (2), and wvice versa. Therefore, the
icosahedral symmetry of quasicrystals can be reached within both schemes. It is
interesting that the holes discussed above are the projections of body-center points
of the 6-dimensional lattice. Another fact worth noting is that further atomic
shells around the central atom look like in the Mackay icosahedron.

Additional evidence for the dodecahedral arrangement can be found in the
neutron-diffraction data: it was shown 3° that both in AlMnSi and in AlFeCu
quasicrystalline alloys the closest atoms are located on the vertices of a regular
dodecahedron (their maximum number was 7). In those works the dodecahedral
arrangement was obtained as a result of some special decoration of 6-dimensional
unit cell.

In conclusion, the dodecahedral structure unit is found to be a universal feature
in quasicrystals and in their crystalline approximants. The proposed projection
scheme seems to be most natural for the description of the local dodecahedral
arrangement.  Another advantage of our approach is that no special atomic
decoration is required.
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